ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-inp Unicode version

Definition df-inp 7641
Description: Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other.

Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers.

A Dedekind cut is an ordered pair of a lower set  l and an upper set  u which is inhabited ( E. q  e. 
Q. q  e.  l  /\  E. r  e. 
Q. r  e.  u), rounded ( A. q  e.  Q. ( q  e.  l  <->  E. r  e.  Q. ( q  <Q  r  /\  r  e.  l
) ) and likewise for  u), disjoint ( A. q  e. 
Q. -.  ( q  e.  l  /\  q  e.  u )) and located ( A. q  e. 
Q. A. r  e.  Q. ( q  <Q  r  ->  ( q  e.  l  \/  r  e.  u
) )). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts.

(Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.)

Assertion
Ref Expression
df-inp  |-  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
Distinct variable group:    u, l, q, r

Detailed syntax breakdown of Definition df-inp
StepHypRef Expression
1 cnp 7466 . 2  class  P.
2 vl . . . . . . . 8  setvar  l
32cv 1394 . . . . . . 7  class  l
4 cnq 7455 . . . . . . 7  class  Q.
53, 4wss 3197 . . . . . 6  wff  l  C_  Q.
6 vu . . . . . . . 8  setvar  u
76cv 1394 . . . . . . 7  class  u
87, 4wss 3197 . . . . . 6  wff  u  C_  Q.
95, 8wa 104 . . . . 5  wff  ( l 
C_  Q.  /\  u  C_ 
Q. )
10 vq . . . . . . . 8  setvar  q
1110, 2wel 2201 . . . . . . 7  wff  q  e.  l
1211, 10, 4wrex 2509 . . . . . 6  wff  E. q  e.  Q.  q  e.  l
13 vr . . . . . . . 8  setvar  r
1413, 6wel 2201 . . . . . . 7  wff  r  e.  u
1514, 13, 4wrex 2509 . . . . . 6  wff  E. r  e.  Q.  r  e.  u
1612, 15wa 104 . . . . 5  wff  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u
)
179, 16wa 104 . . . 4  wff  ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )
1810cv 1394 . . . . . . . . . . 11  class  q
1913cv 1394 . . . . . . . . . . 11  class  r
20 cltq 7460 . . . . . . . . . . 11  class  <Q
2118, 19, 20wbr 4082 . . . . . . . . . 10  wff  q  <Q 
r
2213, 2wel 2201 . . . . . . . . . 10  wff  r  e.  l
2321, 22wa 104 . . . . . . . . 9  wff  ( q 
<Q  r  /\  r  e.  l )
2423, 13, 4wrex 2509 . . . . . . . 8  wff  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  l )
2511, 24wb 105 . . . . . . 7  wff  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  l ) )
2625, 10, 4wral 2508 . . . . . 6  wff  A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )
2710, 6wel 2201 . . . . . . . . . 10  wff  q  e.  u
2821, 27wa 104 . . . . . . . . 9  wff  ( q 
<Q  r  /\  q  e.  u )
2928, 10, 4wrex 2509 . . . . . . . 8  wff  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u )
3014, 29wb 105 . . . . . . 7  wff  ( r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) )
3130, 13, 4wral 2508 . . . . . 6  wff  A. r  e.  Q.  ( r  e.  u  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  u
) )
3226, 31wa 104 . . . . 5  wff  ( A. q  e.  Q.  (
q  e.  l  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  l ) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )
3311, 27wa 104 . . . . . . 7  wff  ( q  e.  l  /\  q  e.  u )
3433wn 3 . . . . . 6  wff  -.  (
q  e.  l  /\  q  e.  u )
3534, 10, 4wral 2508 . . . . 5  wff  A. q  e.  Q.  -.  ( q  e.  l  /\  q  e.  u )
3611, 14wo 713 . . . . . . . 8  wff  ( q  e.  l  \/  r  e.  u )
3721, 36wi 4 . . . . . . 7  wff  ( q 
<Q  r  ->  ( q  e.  l  \/  r  e.  u ) )
3837, 13, 4wral 2508 . . . . . 6  wff  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) )
3938, 10, 4wral 2508 . . . . 5  wff  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) )
4032, 35, 39w3a 1002 . . . 4  wff  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) )
4117, 40wa 104 . . 3  wff  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )
4241, 2, 6copab 4143 . 2  class  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
431, 42wceq 1395 1  wff  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  npsspw  7646  elinp  7649
  Copyright terms: Public domain W3C validator