ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-inp Unicode version

Definition df-inp 7440
Description: Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other.

Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers.

A Dedekind cut is an ordered pair of a lower set  l and an upper set  u which is inhabited ( E. q  e. 
Q. q  e.  l  /\  E. r  e. 
Q. r  e.  u), rounded ( A. q  e.  Q. ( q  e.  l  <->  E. r  e.  Q. ( q  <Q  r  /\  r  e.  l
) ) and likewise for  u), disjoint ( A. q  e. 
Q. -.  ( q  e.  l  /\  q  e.  u )) and located ( A. q  e. 
Q. A. r  e.  Q. ( q  <Q  r  ->  ( q  e.  l  \/  r  e.  u
) )). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts.

(Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.)

Assertion
Ref Expression
df-inp  |-  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
Distinct variable group:    u, l, q, r

Detailed syntax breakdown of Definition df-inp
StepHypRef Expression
1 cnp 7265 . 2  class  P.
2 vl . . . . . . . 8  setvar  l
32cv 1352 . . . . . . 7  class  l
4 cnq 7254 . . . . . . 7  class  Q.
53, 4wss 3127 . . . . . 6  wff  l  C_  Q.
6 vu . . . . . . . 8  setvar  u
76cv 1352 . . . . . . 7  class  u
87, 4wss 3127 . . . . . 6  wff  u  C_  Q.
95, 8wa 104 . . . . 5  wff  ( l 
C_  Q.  /\  u  C_ 
Q. )
10 vq . . . . . . . 8  setvar  q
1110, 2wel 2147 . . . . . . 7  wff  q  e.  l
1211, 10, 4wrex 2454 . . . . . 6  wff  E. q  e.  Q.  q  e.  l
13 vr . . . . . . . 8  setvar  r
1413, 6wel 2147 . . . . . . 7  wff  r  e.  u
1514, 13, 4wrex 2454 . . . . . 6  wff  E. r  e.  Q.  r  e.  u
1612, 15wa 104 . . . . 5  wff  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u
)
179, 16wa 104 . . . 4  wff  ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )
1810cv 1352 . . . . . . . . . . 11  class  q
1913cv 1352 . . . . . . . . . . 11  class  r
20 cltq 7259 . . . . . . . . . . 11  class  <Q
2118, 19, 20wbr 3998 . . . . . . . . . 10  wff  q  <Q 
r
2213, 2wel 2147 . . . . . . . . . 10  wff  r  e.  l
2321, 22wa 104 . . . . . . . . 9  wff  ( q 
<Q  r  /\  r  e.  l )
2423, 13, 4wrex 2454 . . . . . . . 8  wff  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  l )
2511, 24wb 105 . . . . . . 7  wff  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  l ) )
2625, 10, 4wral 2453 . . . . . 6  wff  A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )
2710, 6wel 2147 . . . . . . . . . 10  wff  q  e.  u
2821, 27wa 104 . . . . . . . . 9  wff  ( q 
<Q  r  /\  q  e.  u )
2928, 10, 4wrex 2454 . . . . . . . 8  wff  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u )
3014, 29wb 105 . . . . . . 7  wff  ( r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) )
3130, 13, 4wral 2453 . . . . . 6  wff  A. r  e.  Q.  ( r  e.  u  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  u
) )
3226, 31wa 104 . . . . 5  wff  ( A. q  e.  Q.  (
q  e.  l  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  l ) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )
3311, 27wa 104 . . . . . . 7  wff  ( q  e.  l  /\  q  e.  u )
3433wn 3 . . . . . 6  wff  -.  (
q  e.  l  /\  q  e.  u )
3534, 10, 4wral 2453 . . . . 5  wff  A. q  e.  Q.  -.  ( q  e.  l  /\  q  e.  u )
3611, 14wo 708 . . . . . . . 8  wff  ( q  e.  l  \/  r  e.  u )
3721, 36wi 4 . . . . . . 7  wff  ( q 
<Q  r  ->  ( q  e.  l  \/  r  e.  u ) )
3837, 13, 4wral 2453 . . . . . 6  wff  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) )
3938, 10, 4wral 2453 . . . . 5  wff  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) )
4032, 35, 39w3a 978 . . . 4  wff  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) )
4117, 40wa 104 . . 3  wff  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )
4241, 2, 6copab 4058 . 2  class  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
431, 42wceq 1353 1  wff  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  npsspw  7445  elinp  7448
  Copyright terms: Public domain W3C validator