ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elinp GIF version

Theorem elinp 7657
Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
elinp (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
Distinct variable groups:   𝑟,𝑞,𝐿   𝑈,𝑞,𝑟

Proof of Theorem elinp
Dummy variables 𝑢 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npsspw 7654 . . . . 5 P ⊆ (𝒫 Q × 𝒫 Q)
21sseli 3220 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ⟨𝐿, 𝑈⟩ ∈ (𝒫 Q × 𝒫 Q))
3 opelxp 4748 . . . 4 (⟨𝐿, 𝑈⟩ ∈ (𝒫 Q × 𝒫 Q) ↔ (𝐿 ∈ 𝒫 Q𝑈 ∈ 𝒫 Q))
42, 3sylib 122 . . 3 (⟨𝐿, 𝑈⟩ ∈ P → (𝐿 ∈ 𝒫 Q𝑈 ∈ 𝒫 Q))
5 elex 2811 . . . 4 (𝐿 ∈ 𝒫 Q𝐿 ∈ V)
6 elex 2811 . . . 4 (𝑈 ∈ 𝒫 Q𝑈 ∈ V)
75, 6anim12i 338 . . 3 ((𝐿 ∈ 𝒫 Q𝑈 ∈ 𝒫 Q) → (𝐿 ∈ V ∧ 𝑈 ∈ V))
84, 7syl 14 . 2 (⟨𝐿, 𝑈⟩ ∈ P → (𝐿 ∈ V ∧ 𝑈 ∈ V))
9 nqex 7546 . . . . 5 Q ∈ V
109ssex 4220 . . . 4 (𝐿Q𝐿 ∈ V)
119ssex 4220 . . . 4 (𝑈Q𝑈 ∈ V)
1210, 11anim12i 338 . . 3 ((𝐿Q𝑈Q) → (𝐿 ∈ V ∧ 𝑈 ∈ V))
1312ad2antrr 488 . 2 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → (𝐿 ∈ V ∧ 𝑈 ∈ V))
14 df-inp 7649 . . . 4 P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
1514eleq2i 2296 . . 3 (⟨𝐿, 𝑈⟩ ∈ P ↔ ⟨𝐿, 𝑈⟩ ∈ {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))})
16 sseq1 3247 . . . . . . 7 (𝑙 = 𝐿 → (𝑙Q𝐿Q))
1716anbi1d 465 . . . . . 6 (𝑙 = 𝐿 → ((𝑙Q𝑢Q) ↔ (𝐿Q𝑢Q)))
18 eleq2 2293 . . . . . . . 8 (𝑙 = 𝐿 → (𝑞𝑙𝑞𝐿))
1918rexbidv 2531 . . . . . . 7 (𝑙 = 𝐿 → (∃𝑞Q 𝑞𝑙 ↔ ∃𝑞Q 𝑞𝐿))
2019anbi1d 465 . . . . . 6 (𝑙 = 𝐿 → ((∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢) ↔ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)))
2117, 20anbi12d 473 . . . . 5 (𝑙 = 𝐿 → (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ↔ ((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢))))
22 eleq2 2293 . . . . . . . . . . 11 (𝑙 = 𝐿 → (𝑟𝑙𝑟𝐿))
2322anbi2d 464 . . . . . . . . . 10 (𝑙 = 𝐿 → ((𝑞 <Q 𝑟𝑟𝑙) ↔ (𝑞 <Q 𝑟𝑟𝐿)))
2423rexbidv 2531 . . . . . . . . 9 (𝑙 = 𝐿 → (∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)))
2518, 24bibi12d 235 . . . . . . . 8 (𝑙 = 𝐿 → ((𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ↔ (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿))))
2625ralbidv 2530 . . . . . . 7 (𝑙 = 𝐿 → (∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ↔ ∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿))))
2726anbi1d 465 . . . . . 6 (𝑙 = 𝐿 → ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ↔ (∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢)))))
2818anbi1d 465 . . . . . . . 8 (𝑙 = 𝐿 → ((𝑞𝑙𝑞𝑢) ↔ (𝑞𝐿𝑞𝑢)))
2928notbid 671 . . . . . . 7 (𝑙 = 𝐿 → (¬ (𝑞𝑙𝑞𝑢) ↔ ¬ (𝑞𝐿𝑞𝑢)))
3029ralbidv 2530 . . . . . 6 (𝑙 = 𝐿 → (∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ↔ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢)))
3118orbi1d 796 . . . . . . . 8 (𝑙 = 𝐿 → ((𝑞𝑙𝑟𝑢) ↔ (𝑞𝐿𝑟𝑢)))
3231imbi2d 230 . . . . . . 7 (𝑙 = 𝐿 → ((𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)) ↔ (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))))
33322ralbidv 2554 . . . . . 6 (𝑙 = 𝐿 → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)) ↔ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))))
3427, 30, 333anbi123d 1346 . . . . 5 (𝑙 = 𝐿 → (((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))) ↔ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)))))
3521, 34anbi12d 473 . . . 4 (𝑙 = 𝐿 → ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) ↔ (((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))))))
36 sseq1 3247 . . . . . . 7 (𝑢 = 𝑈 → (𝑢Q𝑈Q))
3736anbi2d 464 . . . . . 6 (𝑢 = 𝑈 → ((𝐿Q𝑢Q) ↔ (𝐿Q𝑈Q)))
38 eleq2 2293 . . . . . . . 8 (𝑢 = 𝑈 → (𝑟𝑢𝑟𝑈))
3938rexbidv 2531 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑟Q 𝑟𝑢 ↔ ∃𝑟Q 𝑟𝑈))
4039anbi2d 464 . . . . . 6 (𝑢 = 𝑈 → ((∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢) ↔ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)))
4137, 40anbi12d 473 . . . . 5 (𝑢 = 𝑈 → (((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)) ↔ ((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈))))
42 eleq2 2293 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑞𝑢𝑞𝑈))
4342anbi2d 464 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑞 <Q 𝑟𝑞𝑢) ↔ (𝑞 <Q 𝑟𝑞𝑈)))
4443rexbidv 2531 . . . . . . . . 9 (𝑢 = 𝑈 → (∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈)))
4538, 44bibi12d 235 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢)) ↔ (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))))
4645ralbidv 2530 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢)) ↔ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))))
4746anbi2d 464 . . . . . 6 (𝑢 = 𝑈 → ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ↔ (∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈)))))
4842anbi2d 464 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑞𝐿𝑞𝑢) ↔ (𝑞𝐿𝑞𝑈)))
4948notbid 671 . . . . . . 7 (𝑢 = 𝑈 → (¬ (𝑞𝐿𝑞𝑢) ↔ ¬ (𝑞𝐿𝑞𝑈)))
5049ralbidv 2530 . . . . . 6 (𝑢 = 𝑈 → (∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ↔ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈)))
5138orbi2d 795 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑞𝐿𝑟𝑢) ↔ (𝑞𝐿𝑟𝑈)))
5251imbi2d 230 . . . . . . 7 (𝑢 = 𝑈 → ((𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)) ↔ (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))
53522ralbidv 2554 . . . . . 6 (𝑢 = 𝑈 → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)) ↔ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))
5447, 50, 533anbi123d 1346 . . . . 5 (𝑢 = 𝑈 → (((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))) ↔ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
5541, 54anbi12d 473 . . . 4 (𝑢 = 𝑈 → ((((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)))) ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))))
5635, 55opelopabg 4355 . . 3 ((𝐿 ∈ V ∧ 𝑈 ∈ V) → (⟨𝐿, 𝑈⟩ ∈ {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))} ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))))
5715, 56bitrid 192 . 2 ((𝐿 ∈ V ∧ 𝑈 ∈ V) → (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))))
588, 13, 57pm5.21nii 709 1 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  wss 3197  𝒫 cpw 3649  cop 3669   class class class wbr 4082  {copab 4143   × cxp 4716  Qcnq 7463   <Q cltq 7468  Pcnp 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-qs 6684  df-ni 7487  df-nqqs 7531  df-inp 7649
This theorem is referenced by:  elnp1st2nd  7659  prml  7660  prmu  7661  prssnql  7662  prssnqu  7663  prcdnql  7667  prcunqu  7668  prltlu  7670  prnmaxl  7671  prnminu  7672  prloc  7674  prdisj  7675  nqprxx  7729  suplocexprlemex  7905
  Copyright terms: Public domain W3C validator