Detailed syntax breakdown of Definition df-limced
| Step | Hyp | Ref
 | Expression | 
| 1 |   | climc 14890 | 
. 2
class 
limℂ | 
| 2 |   | vf | 
. . 3
setvar 𝑓 | 
| 3 |   | vx | 
. . 3
setvar 𝑥 | 
| 4 |   | cc 7877 | 
. . . 4
class
ℂ | 
| 5 |   | cpm 6708 | 
. . . 4
class 
↑pm | 
| 6 | 4, 4, 5 | co 5922 | 
. . 3
class (ℂ
↑pm ℂ) | 
| 7 | 2 | cv 1363 | 
. . . . . . . 8
class 𝑓 | 
| 8 | 7 | cdm 4663 | 
. . . . . . 7
class dom 𝑓 | 
| 9 | 8, 4, 7 | wf 5254 | 
. . . . . 6
wff 𝑓:dom 𝑓⟶ℂ | 
| 10 | 8, 4 | wss 3157 | 
. . . . . 6
wff dom 𝑓 ⊆
ℂ | 
| 11 | 9, 10 | wa 104 | 
. . . . 5
wff (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) | 
| 12 | 3 | cv 1363 | 
. . . . . . 7
class 𝑥 | 
| 13 | 12, 4 | wcel 2167 | 
. . . . . 6
wff 𝑥 ∈ ℂ | 
| 14 |   | vz | 
. . . . . . . . . . . . 13
setvar 𝑧 | 
| 15 | 14 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑧 | 
| 16 |   | cap 8608 | 
. . . . . . . . . . . 12
class 
# | 
| 17 | 15, 12, 16 | wbr 4033 | 
. . . . . . . . . . 11
wff 𝑧 # 𝑥 | 
| 18 |   | cmin 8197 | 
. . . . . . . . . . . . . 14
class 
− | 
| 19 | 15, 12, 18 | co 5922 | 
. . . . . . . . . . . . 13
class (𝑧 − 𝑥) | 
| 20 |   | cabs 11162 | 
. . . . . . . . . . . . 13
class
abs | 
| 21 | 19, 20 | cfv 5258 | 
. . . . . . . . . . . 12
class
(abs‘(𝑧
− 𝑥)) | 
| 22 |   | vd | 
. . . . . . . . . . . . 13
setvar 𝑑 | 
| 23 | 22 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑑 | 
| 24 |   | clt 8061 | 
. . . . . . . . . . . 12
class 
< | 
| 25 | 21, 23, 24 | wbr 4033 | 
. . . . . . . . . . 11
wff
(abs‘(𝑧
− 𝑥)) < 𝑑 | 
| 26 | 17, 25 | wa 104 | 
. . . . . . . . . 10
wff (𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) | 
| 27 | 15, 7 | cfv 5258 | 
. . . . . . . . . . . . 13
class (𝑓‘𝑧) | 
| 28 |   | vy | 
. . . . . . . . . . . . . 14
setvar 𝑦 | 
| 29 | 28 | cv 1363 | 
. . . . . . . . . . . . 13
class 𝑦 | 
| 30 | 27, 29, 18 | co 5922 | 
. . . . . . . . . . . 12
class ((𝑓‘𝑧) − 𝑦) | 
| 31 | 30, 20 | cfv 5258 | 
. . . . . . . . . . 11
class
(abs‘((𝑓‘𝑧) − 𝑦)) | 
| 32 |   | ve | 
. . . . . . . . . . . 12
setvar 𝑒 | 
| 33 | 32 | cv 1363 | 
. . . . . . . . . . 11
class 𝑒 | 
| 34 | 31, 33, 24 | wbr 4033 | 
. . . . . . . . . 10
wff
(abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒 | 
| 35 | 26, 34 | wi 4 | 
. . . . . . . . 9
wff ((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) | 
| 36 | 35, 14, 8 | wral 2475 | 
. . . . . . . 8
wff
∀𝑧 ∈ dom
𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) | 
| 37 |   | crp 9728 | 
. . . . . . . 8
class
ℝ+ | 
| 38 | 36, 22, 37 | wrex 2476 | 
. . . . . . 7
wff
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) | 
| 39 | 38, 32, 37 | wral 2475 | 
. . . . . 6
wff
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) | 
| 40 | 13, 39 | wa 104 | 
. . . . 5
wff (𝑥 ∈ ℂ ∧
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)) | 
| 41 | 11, 40 | wa 104 | 
. . . 4
wff ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒))) | 
| 42 | 41, 28, 4 | crab 2479 | 
. . 3
class {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))} | 
| 43 | 2, 3, 6, 4, 42 | cmpo 5924 | 
. 2
class (𝑓 ∈ (ℂ
↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) | 
| 44 | 1, 43 | wceq 1364 | 
1
wff 
limℂ = (𝑓
∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |