ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-limced GIF version

Definition df-limced 14061
Description: Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
Assertion
Ref Expression
df-limced limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∈ β„‚ ∣ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
Distinct variable group:   𝑒,𝑑,𝑓,π‘₯,𝑦,𝑧

Detailed syntax breakdown of Definition df-limced
StepHypRef Expression
1 climc 14059 . 2 class limβ„‚
2 vf . . 3 setvar 𝑓
3 vx . . 3 setvar π‘₯
4 cc 7808 . . . 4 class β„‚
5 cpm 6648 . . . 4 class ↑pm
64, 4, 5co 5874 . . 3 class (β„‚ ↑pm β„‚)
72cv 1352 . . . . . . . 8 class 𝑓
87cdm 4626 . . . . . . 7 class dom 𝑓
98, 4, 7wf 5212 . . . . . 6 wff 𝑓:dom π‘“βŸΆβ„‚
108, 4wss 3129 . . . . . 6 wff dom 𝑓 βŠ† β„‚
119, 10wa 104 . . . . 5 wff (𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚)
123cv 1352 . . . . . . 7 class π‘₯
1312, 4wcel 2148 . . . . . 6 wff π‘₯ ∈ β„‚
14 vz . . . . . . . . . . . . 13 setvar 𝑧
1514cv 1352 . . . . . . . . . . . 12 class 𝑧
16 cap 8537 . . . . . . . . . . . 12 class #
1715, 12, 16wbr 4003 . . . . . . . . . . 11 wff 𝑧 # π‘₯
18 cmin 8127 . . . . . . . . . . . . . 14 class βˆ’
1915, 12, 18co 5874 . . . . . . . . . . . . 13 class (𝑧 βˆ’ π‘₯)
20 cabs 11005 . . . . . . . . . . . . 13 class abs
2119, 20cfv 5216 . . . . . . . . . . . 12 class (absβ€˜(𝑧 βˆ’ π‘₯))
22 vd . . . . . . . . . . . . 13 setvar 𝑑
2322cv 1352 . . . . . . . . . . . 12 class 𝑑
24 clt 7991 . . . . . . . . . . . 12 class <
2521, 23, 24wbr 4003 . . . . . . . . . . 11 wff (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑
2617, 25wa 104 . . . . . . . . . 10 wff (𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑)
2715, 7cfv 5216 . . . . . . . . . . . . 13 class (π‘“β€˜π‘§)
28 vy . . . . . . . . . . . . . 14 setvar 𝑦
2928cv 1352 . . . . . . . . . . . . 13 class 𝑦
3027, 29, 18co 5874 . . . . . . . . . . . 12 class ((π‘“β€˜π‘§) βˆ’ 𝑦)
3130, 20cfv 5216 . . . . . . . . . . 11 class (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦))
32 ve . . . . . . . . . . . 12 setvar 𝑒
3332cv 1352 . . . . . . . . . . 11 class 𝑒
3431, 33, 24wbr 4003 . . . . . . . . . 10 wff (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒
3526, 34wi 4 . . . . . . . . 9 wff ((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)
3635, 14, 8wral 2455 . . . . . . . 8 wff βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)
37 crp 9652 . . . . . . . 8 class ℝ+
3836, 22, 37wrex 2456 . . . . . . 7 wff βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)
3938, 32, 37wral 2455 . . . . . 6 wff βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)
4013, 39wa 104 . . . . 5 wff (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒))
4111, 40wa 104 . . . 4 wff ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))
4241, 28, 4crab 2459 . . 3 class {𝑦 ∈ β„‚ ∣ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))}
432, 3, 6, 4, 42cmpo 5876 . 2 class (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∈ β„‚ ∣ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
441, 43wceq 1353 1 wff limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∈ β„‚ ∣ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
Colors of variables: wff set class
This definition is referenced by:  limcrcl  14063  limccl  14064  ellimc3apf  14065
  Copyright terms: Public domain W3C validator