Step | Hyp | Ref
| Expression |
1 | | climc 14059 |
. 2
class
limβ |
2 | | vf |
. . 3
setvar π |
3 | | vx |
. . 3
setvar π₯ |
4 | | cc 7808 |
. . . 4
class
β |
5 | | cpm 6648 |
. . . 4
class
βpm |
6 | 4, 4, 5 | co 5874 |
. . 3
class (β
βpm β) |
7 | 2 | cv 1352 |
. . . . . . . 8
class π |
8 | 7 | cdm 4626 |
. . . . . . 7
class dom π |
9 | 8, 4, 7 | wf 5212 |
. . . . . 6
wff π:dom πβΆβ |
10 | 8, 4 | wss 3129 |
. . . . . 6
wff dom π β
β |
11 | 9, 10 | wa 104 |
. . . . 5
wff (π:dom πβΆβ β§ dom π β β) |
12 | 3 | cv 1352 |
. . . . . . 7
class π₯ |
13 | 12, 4 | wcel 2148 |
. . . . . 6
wff π₯ β β |
14 | | vz |
. . . . . . . . . . . . 13
setvar π§ |
15 | 14 | cv 1352 |
. . . . . . . . . . . 12
class π§ |
16 | | cap 8537 |
. . . . . . . . . . . 12
class
# |
17 | 15, 12, 16 | wbr 4003 |
. . . . . . . . . . 11
wff π§ # π₯ |
18 | | cmin 8127 |
. . . . . . . . . . . . . 14
class
β |
19 | 15, 12, 18 | co 5874 |
. . . . . . . . . . . . 13
class (π§ β π₯) |
20 | | cabs 11005 |
. . . . . . . . . . . . 13
class
abs |
21 | 19, 20 | cfv 5216 |
. . . . . . . . . . . 12
class
(absβ(π§
β π₯)) |
22 | | vd |
. . . . . . . . . . . . 13
setvar π |
23 | 22 | cv 1352 |
. . . . . . . . . . . 12
class π |
24 | | clt 7991 |
. . . . . . . . . . . 12
class
< |
25 | 21, 23, 24 | wbr 4003 |
. . . . . . . . . . 11
wff
(absβ(π§
β π₯)) < π |
26 | 17, 25 | wa 104 |
. . . . . . . . . 10
wff (π§ # π₯ β§ (absβ(π§ β π₯)) < π) |
27 | 15, 7 | cfv 5216 |
. . . . . . . . . . . . 13
class (πβπ§) |
28 | | vy |
. . . . . . . . . . . . . 14
setvar π¦ |
29 | 28 | cv 1352 |
. . . . . . . . . . . . 13
class π¦ |
30 | 27, 29, 18 | co 5874 |
. . . . . . . . . . . 12
class ((πβπ§) β π¦) |
31 | 30, 20 | cfv 5216 |
. . . . . . . . . . 11
class
(absβ((πβπ§) β π¦)) |
32 | | ve |
. . . . . . . . . . . 12
setvar π |
33 | 32 | cv 1352 |
. . . . . . . . . . 11
class π |
34 | 31, 33, 24 | wbr 4003 |
. . . . . . . . . 10
wff
(absβ((πβπ§) β π¦)) < π |
35 | 26, 34 | wi 4 |
. . . . . . . . 9
wff ((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π) |
36 | 35, 14, 8 | wral 2455 |
. . . . . . . 8
wff
βπ§ β dom
π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π) |
37 | | crp 9652 |
. . . . . . . 8
class
β+ |
38 | 36, 22, 37 | wrex 2456 |
. . . . . . 7
wff
βπ β
β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π) |
39 | 38, 32, 37 | wral 2455 |
. . . . . 6
wff
βπ β
β+ βπ β β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π) |
40 | 13, 39 | wa 104 |
. . . . 5
wff (π₯ β β β§
βπ β
β+ βπ β β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π)) |
41 | 11, 40 | wa 104 |
. . . 4
wff ((π:dom πβΆβ β§ dom π β β) β§ (π₯ β β β§ βπ β β+
βπ β
β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π))) |
42 | 41, 28, 4 | crab 2459 |
. . 3
class {π¦ β β β£ ((π:dom πβΆβ β§ dom π β β) β§ (π₯ β β β§ βπ β β+
βπ β
β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π)))} |
43 | 2, 3, 6, 4, 42 | cmpo 5876 |
. 2
class (π β (β
βpm β), π₯ β β β¦ {π¦ β β β£ ((π:dom πβΆβ β§ dom π β β) β§ (π₯ β β β§ βπ β β+
βπ β
β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π)))}) |
44 | 1, 43 | wceq 1353 |
1
wff
limβ = (π
β (β βpm β), π₯ β β β¦ {π¦ β β β£ ((π:dom πβΆβ β§ dom π β β) β§ (π₯ β β β§ βπ β β+
βπ β
β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π)))}) |