Detailed syntax breakdown of Definition df-limced
Step | Hyp | Ref
| Expression |
1 | | climc 13417 |
. 2
class
limℂ |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | vx |
. . 3
setvar 𝑥 |
4 | | cc 7772 |
. . . 4
class
ℂ |
5 | | cpm 6627 |
. . . 4
class
↑pm |
6 | 4, 4, 5 | co 5853 |
. . 3
class (ℂ
↑pm ℂ) |
7 | 2 | cv 1347 |
. . . . . . . 8
class 𝑓 |
8 | 7 | cdm 4611 |
. . . . . . 7
class dom 𝑓 |
9 | 8, 4, 7 | wf 5194 |
. . . . . 6
wff 𝑓:dom 𝑓⟶ℂ |
10 | 8, 4 | wss 3121 |
. . . . . 6
wff dom 𝑓 ⊆
ℂ |
11 | 9, 10 | wa 103 |
. . . . 5
wff (𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) |
12 | 3 | cv 1347 |
. . . . . . 7
class 𝑥 |
13 | 12, 4 | wcel 2141 |
. . . . . 6
wff 𝑥 ∈ ℂ |
14 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
15 | 14 | cv 1347 |
. . . . . . . . . . . 12
class 𝑧 |
16 | | cap 8500 |
. . . . . . . . . . . 12
class
# |
17 | 15, 12, 16 | wbr 3989 |
. . . . . . . . . . 11
wff 𝑧 # 𝑥 |
18 | | cmin 8090 |
. . . . . . . . . . . . . 14
class
− |
19 | 15, 12, 18 | co 5853 |
. . . . . . . . . . . . 13
class (𝑧 − 𝑥) |
20 | | cabs 10961 |
. . . . . . . . . . . . 13
class
abs |
21 | 19, 20 | cfv 5198 |
. . . . . . . . . . . 12
class
(abs‘(𝑧
− 𝑥)) |
22 | | vd |
. . . . . . . . . . . . 13
setvar 𝑑 |
23 | 22 | cv 1347 |
. . . . . . . . . . . 12
class 𝑑 |
24 | | clt 7954 |
. . . . . . . . . . . 12
class
< |
25 | 21, 23, 24 | wbr 3989 |
. . . . . . . . . . 11
wff
(abs‘(𝑧
− 𝑥)) < 𝑑 |
26 | 17, 25 | wa 103 |
. . . . . . . . . 10
wff (𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) |
27 | 15, 7 | cfv 5198 |
. . . . . . . . . . . . 13
class (𝑓‘𝑧) |
28 | | vy |
. . . . . . . . . . . . . 14
setvar 𝑦 |
29 | 28 | cv 1347 |
. . . . . . . . . . . . 13
class 𝑦 |
30 | 27, 29, 18 | co 5853 |
. . . . . . . . . . . 12
class ((𝑓‘𝑧) − 𝑦) |
31 | 30, 20 | cfv 5198 |
. . . . . . . . . . 11
class
(abs‘((𝑓‘𝑧) − 𝑦)) |
32 | | ve |
. . . . . . . . . . . 12
setvar 𝑒 |
33 | 32 | cv 1347 |
. . . . . . . . . . 11
class 𝑒 |
34 | 31, 33, 24 | wbr 3989 |
. . . . . . . . . 10
wff
(abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒 |
35 | 26, 34 | wi 4 |
. . . . . . . . 9
wff ((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) |
36 | 35, 14, 8 | wral 2448 |
. . . . . . . 8
wff
∀𝑧 ∈ dom
𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) |
37 | | crp 9610 |
. . . . . . . 8
class
ℝ+ |
38 | 36, 22, 37 | wrex 2449 |
. . . . . . 7
wff
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) |
39 | 38, 32, 37 | wral 2448 |
. . . . . 6
wff
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) |
40 | 13, 39 | wa 103 |
. . . . 5
wff (𝑥 ∈ ℂ ∧
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)) |
41 | 11, 40 | wa 103 |
. . . 4
wff ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒))) |
42 | 41, 28, 4 | crab 2452 |
. . 3
class {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))} |
43 | 2, 3, 6, 4, 42 | cmpo 5855 |
. 2
class (𝑓 ∈ (ℂ
↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |
44 | 1, 43 | wceq 1348 |
1
wff
limℂ = (𝑓
∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |