ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccl GIF version

Theorem limccl 14131
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl (𝐹 limβ„‚ 𝐡) βŠ† β„‚

Proof of Theorem limccl
Dummy variables 𝑑 𝑒 𝑓 π‘₯ 𝑦 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ 𝑀 ∈ (𝐹 limβ„‚ 𝐡))
2 df-limced 14128 . . . . . 6 limβ„‚ = (𝑓 ∈ (β„‚ ↑pm β„‚), π‘₯ ∈ β„‚ ↦ {𝑦 ∈ β„‚ ∣ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
32elmpocl1 6070 . . . . 5 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ 𝐹 ∈ (β„‚ ↑pm β„‚))
4 limcrcl 14130 . . . . . 6 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ (𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚ ∧ 𝐡 ∈ β„‚))
54simp3d 1011 . . . . 5 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ 𝐡 ∈ β„‚)
6 cnex 7935 . . . . . . 7 β„‚ ∈ V
76rabex 4148 . . . . . 6 {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))} ∈ V
87a1i 9 . . . . 5 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))} ∈ V)
9 simpl 109 . . . . . . . . . 10 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ 𝑓 = 𝐹)
109dmeqd 4830 . . . . . . . . . 10 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ dom 𝑓 = dom 𝐹)
119, 10feq12d 5356 . . . . . . . . 9 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (𝑓:dom π‘“βŸΆβ„‚ ↔ 𝐹:dom πΉβŸΆβ„‚))
1210sseq1d 3185 . . . . . . . . 9 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (dom 𝑓 βŠ† β„‚ ↔ dom 𝐹 βŠ† β„‚))
1311, 12anbi12d 473 . . . . . . . 8 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ↔ (𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚)))
14 simpr 110 . . . . . . . . . 10 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ π‘₯ = 𝐡)
1514eleq1d 2246 . . . . . . . . 9 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (π‘₯ ∈ β„‚ ↔ 𝐡 ∈ β„‚))
1614breq2d 4016 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (𝑧 # π‘₯ ↔ 𝑧 # 𝐡))
1714oveq2d 5891 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (𝑧 βˆ’ π‘₯) = (𝑧 βˆ’ 𝐡))
1817fveq2d 5520 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (absβ€˜(𝑧 βˆ’ π‘₯)) = (absβ€˜(𝑧 βˆ’ 𝐡)))
1918breq1d 4014 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ ((absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑 ↔ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑))
2016, 19anbi12d 473 . . . . . . . . . . . . 13 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ ((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) ↔ (𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑)))
219fveq1d 5518 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (π‘“β€˜π‘§) = (πΉβ€˜π‘§))
2221fvoveq1d 5897 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) = (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)))
2322breq1d 4014 . . . . . . . . . . . . 13 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ ((absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒 ↔ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒))
2420, 23imbi12d 234 . . . . . . . . . . . 12 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒) ↔ ((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))
2510, 24raleqbidv 2685 . . . . . . . . . . 11 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒) ↔ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))
2625rexbidv 2478 . . . . . . . . . 10 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒) ↔ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))
2726ralbidv 2477 . . . . . . . . 9 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒) ↔ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))
2815, 27anbi12d 473 . . . . . . . 8 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ ((π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)) ↔ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒))))
2913, 28anbi12d 473 . . . . . . 7 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ (((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒))) ↔ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))))
3029rabbidv 2727 . . . . . 6 ((𝑓 = 𝐹 ∧ π‘₯ = 𝐡) β†’ {𝑦 ∈ β„‚ ∣ ((𝑓:dom π‘“βŸΆβ„‚ ∧ dom 𝑓 βŠ† β„‚) ∧ (π‘₯ ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝑓((𝑧 # π‘₯ ∧ (absβ€˜(𝑧 βˆ’ π‘₯)) < 𝑑) β†’ (absβ€˜((π‘“β€˜π‘§) βˆ’ 𝑦)) < 𝑒)))} = {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
3130, 2ovmpoga 6004 . . . . 5 ((𝐹 ∈ (β„‚ ↑pm β„‚) ∧ 𝐡 ∈ β„‚ ∧ {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))} ∈ V) β†’ (𝐹 limβ„‚ 𝐡) = {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
323, 5, 8, 31syl3anc 1238 . . . 4 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ (𝐹 limβ„‚ 𝐡) = {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
331, 32eleqtrd 2256 . . 3 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ 𝑀 ∈ {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))})
34 elrabi 2891 . . 3 (𝑀 ∈ {𝑦 ∈ β„‚ ∣ ((𝐹:dom πΉβŸΆβ„‚ ∧ dom 𝐹 βŠ† β„‚) ∧ (𝐡 ∈ β„‚ ∧ βˆ€π‘’ ∈ ℝ+ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘§ ∈ dom 𝐹((𝑧 # 𝐡 ∧ (absβ€˜(𝑧 βˆ’ 𝐡)) < 𝑑) β†’ (absβ€˜((πΉβ€˜π‘§) βˆ’ 𝑦)) < 𝑒)))} β†’ 𝑀 ∈ β„‚)
3533, 34syl 14 . 2 (𝑀 ∈ (𝐹 limβ„‚ 𝐡) β†’ 𝑀 ∈ β„‚)
3635ssriv 3160 1 (𝐹 limβ„‚ 𝐡) βŠ† β„‚
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  {crab 2459  Vcvv 2738   βŠ† wss 3130   class class class wbr 4004  dom cdm 4627  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875   ↑pm cpm 6649  β„‚cc 7809   < clt 7992   βˆ’ cmin 8128   # cap 8538  β„+crp 9653  abscabs 11006   limβ„‚ climc 14126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pm 6651  df-limced 14128
This theorem is referenced by:  reldvg  14151  dvfvalap  14153  dvcl  14155
  Copyright terms: Public domain W3C validator