| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. . . 4
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝑤 ∈ (𝐹 limℂ 𝐵)) |
| 2 | | df-limced 14976 |
. . . . . 6
⊢
limℂ = (𝑓
∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |
| 3 | 2 | elmpocl1 6123 |
. . . . 5
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
| 4 | | limcrcl 14978 |
. . . . . 6
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
| 5 | 4 | simp3d 1013 |
. . . . 5
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝐵 ∈ ℂ) |
| 6 | | cnex 8020 |
. . . . . . 7
⊢ ℂ
∈ V |
| 7 | 6 | rabex 4178 |
. . . . . 6
⊢ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} ∈ V |
| 8 | 7 | a1i 9 |
. . . . 5
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} ∈ V) |
| 9 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → 𝑓 = 𝐹) |
| 10 | 9 | dmeqd 4869 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → dom 𝑓 = dom 𝐹) |
| 11 | 9, 10 | feq12d 5400 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑓:dom 𝑓⟶ℂ ↔ 𝐹:dom 𝐹⟶ℂ)) |
| 12 | 10 | sseq1d 3213 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (dom 𝑓 ⊆ ℂ ↔ dom 𝐹 ⊆ ℂ)) |
| 13 | 11, 12 | anbi12d 473 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ))) |
| 14 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
| 15 | 14 | eleq1d 2265 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 16 | 14 | breq2d 4046 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑧 # 𝑥 ↔ 𝑧 # 𝐵)) |
| 17 | 14 | oveq2d 5941 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑧 − 𝑥) = (𝑧 − 𝐵)) |
| 18 | 17 | fveq2d 5565 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (abs‘(𝑧 − 𝑥)) = (abs‘(𝑧 − 𝐵))) |
| 19 | 18 | breq1d 4044 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((abs‘(𝑧 − 𝑥)) < 𝑑 ↔ (abs‘(𝑧 − 𝐵)) < 𝑑)) |
| 20 | 16, 19 | anbi12d 473 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) ↔ (𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑))) |
| 21 | 9 | fveq1d 5563 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑓‘𝑧) = (𝐹‘𝑧)) |
| 22 | 21 | fvoveq1d 5947 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (abs‘((𝑓‘𝑧) − 𝑦)) = (abs‘((𝐹‘𝑧) − 𝑦))) |
| 23 | 22 | breq1d 4044 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
| 24 | 20, 23 | imbi12d 234 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 25 | 10, 24 | raleqbidv 2709 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 26 | 25 | rexbidv 2498 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 27 | 26 | ralbidv 2497 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
| 28 | 15, 27 | anbi12d 473 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)) ↔ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))) |
| 29 | 13, 28 | anbi12d 473 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒))) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))))) |
| 30 | 29 | rabbidv 2752 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))} = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
| 31 | 30, 2 | ovmpoga 6056 |
. . . . 5
⊢ ((𝐹 ∈ (ℂ
↑pm ℂ) ∧ 𝐵 ∈ ℂ ∧ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} ∈ V) → (𝐹 limℂ 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
| 32 | 3, 5, 8, 31 | syl3anc 1249 |
. . . 4
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
| 33 | 1, 32 | eleqtrd 2275 |
. . 3
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
| 34 | | elrabi 2917 |
. . 3
⊢ (𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} → 𝑤 ∈ ℂ) |
| 35 | 33, 34 | syl 14 |
. 2
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝑤 ∈ ℂ) |
| 36 | 35 | ssriv 3188 |
1
⊢ (𝐹 limℂ 𝐵) ⊆
ℂ |