Step | Hyp | Ref
| Expression |
1 | | id 19 |
. . . 4
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝑤 ∈ (𝐹 limℂ 𝐵)) |
2 | | df-limced 13265 |
. . . . . 6
⊢
limℂ = (𝑓
∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |
3 | 2 | elmpocl1 6037 |
. . . . 5
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝐹 ∈ (ℂ ↑pm
ℂ)) |
4 | | limcrcl 13267 |
. . . . . 6
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
5 | 4 | simp3d 1001 |
. . . . 5
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝐵 ∈ ℂ) |
6 | | cnex 7877 |
. . . . . . 7
⊢ ℂ
∈ V |
7 | 6 | rabex 4126 |
. . . . . 6
⊢ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} ∈ V |
8 | 7 | a1i 9 |
. . . . 5
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} ∈ V) |
9 | | simpl 108 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → 𝑓 = 𝐹) |
10 | 9 | dmeqd 4806 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → dom 𝑓 = dom 𝐹) |
11 | 9, 10 | feq12d 5327 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑓:dom 𝑓⟶ℂ ↔ 𝐹:dom 𝐹⟶ℂ)) |
12 | 10 | sseq1d 3171 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (dom 𝑓 ⊆ ℂ ↔ dom 𝐹 ⊆ ℂ)) |
13 | 11, 12 | anbi12d 465 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ))) |
14 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
15 | 14 | eleq1d 2235 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
16 | 14 | breq2d 3994 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑧 # 𝑥 ↔ 𝑧 # 𝐵)) |
17 | 14 | oveq2d 5858 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑧 − 𝑥) = (𝑧 − 𝐵)) |
18 | 17 | fveq2d 5490 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (abs‘(𝑧 − 𝑥)) = (abs‘(𝑧 − 𝐵))) |
19 | 18 | breq1d 3992 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((abs‘(𝑧 − 𝑥)) < 𝑑 ↔ (abs‘(𝑧 − 𝐵)) < 𝑑)) |
20 | 16, 19 | anbi12d 465 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) ↔ (𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑))) |
21 | 9 | fveq1d 5488 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (𝑓‘𝑧) = (𝐹‘𝑧)) |
22 | 21 | fvoveq1d 5864 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (abs‘((𝑓‘𝑧) − 𝑦)) = (abs‘((𝐹‘𝑧) − 𝑦))) |
23 | 22 | breq1d 3992 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)) |
24 | 20, 23 | imbi12d 233 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
25 | 10, 24 | raleqbidv 2673 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
26 | 25 | rexbidv 2467 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
27 | 26 | ralbidv 2466 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))) |
28 | 15, 27 | anbi12d 465 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)) ↔ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))) |
29 | 13, 28 | anbi12d 465 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → (((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒))) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒))))) |
30 | 29 | rabbidv 2715 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝐵) → {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))} = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
31 | 30, 2 | ovmpoga 5971 |
. . . . 5
⊢ ((𝐹 ∈ (ℂ
↑pm ℂ) ∧ 𝐵 ∈ ℂ ∧ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} ∈ V) → (𝐹 limℂ 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
32 | 3, 5, 8, 31 | syl3anc 1228 |
. . . 4
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
33 | 1, 32 | eleqtrd 2245 |
. . 3
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))}) |
34 | | elrabi 2879 |
. . 3
⊢ (𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑧) − 𝑦)) < 𝑒)))} → 𝑤 ∈ ℂ) |
35 | 33, 34 | syl 14 |
. 2
⊢ (𝑤 ∈ (𝐹 limℂ 𝐵) → 𝑤 ∈ ℂ) |
36 | 35 | ssriv 3146 |
1
⊢ (𝐹 limℂ 𝐵) ⊆
ℂ |