ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccl GIF version

Theorem limccl 15175
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl (𝐹 lim 𝐵) ⊆ ℂ

Proof of Theorem limccl
Dummy variables 𝑑 𝑒 𝑓 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ (𝐹 lim 𝐵))
2 df-limced 15172 . . . . . 6 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
32elmpocl1 6149 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → 𝐹 ∈ (ℂ ↑pm ℂ))
4 limcrcl 15174 . . . . . 6 (𝑤 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
54simp3d 1014 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
6 cnex 8056 . . . . . . 7 ℂ ∈ V
76rabex 4192 . . . . . 6 {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V
87a1i 9 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V)
9 simpl 109 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → 𝑓 = 𝐹)
109dmeqd 4885 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → dom 𝑓 = dom 𝐹)
119, 10feq12d 5421 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑓:dom 𝑓⟶ℂ ↔ 𝐹:dom 𝐹⟶ℂ))
1210sseq1d 3223 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (dom 𝑓 ⊆ ℂ ↔ dom 𝐹 ⊆ ℂ))
1311, 12anbi12d 473 . . . . . . . 8 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ)))
14 simpr 110 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → 𝑥 = 𝐵)
1514eleq1d 2275 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
1614breq2d 4059 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑧 # 𝑥𝑧 # 𝐵))
1714oveq2d 5967 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑧𝑥) = (𝑧𝐵))
1817fveq2d 5587 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹𝑥 = 𝐵) → (abs‘(𝑧𝑥)) = (abs‘(𝑧𝐵)))
1918breq1d 4057 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → ((abs‘(𝑧𝑥)) < 𝑑 ↔ (abs‘(𝑧𝐵)) < 𝑑))
2016, 19anbi12d 473 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) ↔ (𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑)))
219fveq1d 5585 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑓𝑧) = (𝐹𝑧))
2221fvoveq1d 5973 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → (abs‘((𝑓𝑧) − 𝑦)) = (abs‘((𝐹𝑧) − 𝑦)))
2322breq1d 4057 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑥 = 𝐵) → ((abs‘((𝑓𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
2420, 23imbi12d 234 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑥 = 𝐵) → (((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2510, 24raleqbidv 2719 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑥 = 𝐵) → (∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2625rexbidv 2508 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → (∃𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2726ralbidv 2507 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2815, 27anbi12d 473 . . . . . . . 8 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)) ↔ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))))
2913, 28anbi12d 473 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝐵) → (((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒))) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))))
3029rabbidv 2762 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝐵) → {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))} = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
3130, 2ovmpoga 6082 . . . . 5 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ ∧ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V) → (𝐹 lim 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
323, 5, 8, 31syl3anc 1250 . . . 4 (𝑤 ∈ (𝐹 lim 𝐵) → (𝐹 lim 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
331, 32eleqtrd 2285 . . 3 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
34 elrabi 2927 . . 3 (𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} → 𝑤 ∈ ℂ)
3533, 34syl 14 . 2 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ ℂ)
3635ssriv 3198 1 (𝐹 lim 𝐵) ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  Vcvv 2773  wss 3167   class class class wbr 4047  dom cdm 4679  wf 5272  cfv 5276  (class class class)co 5951  pm cpm 6743  cc 7930   < clt 8114  cmin 8250   # cap 8661  +crp 9782  abscabs 11352   lim climc 15170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pm 6745  df-limced 15172
This theorem is referenced by:  reldvg  15195  dvfvalap  15197  dvcl  15199
  Copyright terms: Public domain W3C validator