ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccl GIF version

Theorem limccl 15341
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl (𝐹 lim 𝐵) ⊆ ℂ

Proof of Theorem limccl
Dummy variables 𝑑 𝑒 𝑓 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ (𝐹 lim 𝐵))
2 df-limced 15338 . . . . . 6 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
32elmpocl1 6207 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → 𝐹 ∈ (ℂ ↑pm ℂ))
4 limcrcl 15340 . . . . . 6 (𝑤 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
54simp3d 1035 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
6 cnex 8131 . . . . . . 7 ℂ ∈ V
76rabex 4228 . . . . . 6 {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V
87a1i 9 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V)
9 simpl 109 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → 𝑓 = 𝐹)
109dmeqd 4925 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → dom 𝑓 = dom 𝐹)
119, 10feq12d 5463 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑓:dom 𝑓⟶ℂ ↔ 𝐹:dom 𝐹⟶ℂ))
1210sseq1d 3253 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (dom 𝑓 ⊆ ℂ ↔ dom 𝐹 ⊆ ℂ))
1311, 12anbi12d 473 . . . . . . . 8 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ)))
14 simpr 110 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → 𝑥 = 𝐵)
1514eleq1d 2298 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
1614breq2d 4095 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑧 # 𝑥𝑧 # 𝐵))
1714oveq2d 6023 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑧𝑥) = (𝑧𝐵))
1817fveq2d 5633 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹𝑥 = 𝐵) → (abs‘(𝑧𝑥)) = (abs‘(𝑧𝐵)))
1918breq1d 4093 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → ((abs‘(𝑧𝑥)) < 𝑑 ↔ (abs‘(𝑧𝐵)) < 𝑑))
2016, 19anbi12d 473 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) ↔ (𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑)))
219fveq1d 5631 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑓𝑧) = (𝐹𝑧))
2221fvoveq1d 6029 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → (abs‘((𝑓𝑧) − 𝑦)) = (abs‘((𝐹𝑧) − 𝑦)))
2322breq1d 4093 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑥 = 𝐵) → ((abs‘((𝑓𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
2420, 23imbi12d 234 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑥 = 𝐵) → (((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2510, 24raleqbidv 2744 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑥 = 𝐵) → (∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2625rexbidv 2531 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → (∃𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2726ralbidv 2530 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2815, 27anbi12d 473 . . . . . . . 8 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)) ↔ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))))
2913, 28anbi12d 473 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝐵) → (((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒))) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))))
3029rabbidv 2788 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝐵) → {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))} = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
3130, 2ovmpoga 6140 . . . . 5 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ ∧ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V) → (𝐹 lim 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
323, 5, 8, 31syl3anc 1271 . . . 4 (𝑤 ∈ (𝐹 lim 𝐵) → (𝐹 lim 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
331, 32eleqtrd 2308 . . 3 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
34 elrabi 2956 . . 3 (𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} → 𝑤 ∈ ℂ)
3533, 34syl 14 . 2 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ ℂ)
3635ssriv 3228 1 (𝐹 lim 𝐵) ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  wss 3197   class class class wbr 4083  dom cdm 4719  wf 5314  cfv 5318  (class class class)co 6007  pm cpm 6804  cc 8005   < clt 8189  cmin 8325   # cap 8736  +crp 9857  abscabs 11516   lim climc 15336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pm 6806  df-limced 15338
This theorem is referenced by:  reldvg  15361  dvfvalap  15363  dvcl  15365
  Copyright terms: Public domain W3C validator