ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccl GIF version

Theorem limccl 13268
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl (𝐹 lim 𝐵) ⊆ ℂ

Proof of Theorem limccl
Dummy variables 𝑑 𝑒 𝑓 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ (𝐹 lim 𝐵))
2 df-limced 13265 . . . . . 6 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
32elmpocl1 6037 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → 𝐹 ∈ (ℂ ↑pm ℂ))
4 limcrcl 13267 . . . . . 6 (𝑤 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
54simp3d 1001 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
6 cnex 7877 . . . . . . 7 ℂ ∈ V
76rabex 4126 . . . . . 6 {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V
87a1i 9 . . . . 5 (𝑤 ∈ (𝐹 lim 𝐵) → {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V)
9 simpl 108 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → 𝑓 = 𝐹)
109dmeqd 4806 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → dom 𝑓 = dom 𝐹)
119, 10feq12d 5327 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑓:dom 𝑓⟶ℂ ↔ 𝐹:dom 𝐹⟶ℂ))
1210sseq1d 3171 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (dom 𝑓 ⊆ ℂ ↔ dom 𝐹 ⊆ ℂ))
1311, 12anbi12d 465 . . . . . . . 8 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ)))
14 simpr 109 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → 𝑥 = 𝐵)
1514eleq1d 2235 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
1614breq2d 3994 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑧 # 𝑥𝑧 # 𝐵))
1714oveq2d 5858 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑧𝑥) = (𝑧𝐵))
1817fveq2d 5490 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹𝑥 = 𝐵) → (abs‘(𝑧𝑥)) = (abs‘(𝑧𝐵)))
1918breq1d 3992 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → ((abs‘(𝑧𝑥)) < 𝑑 ↔ (abs‘(𝑧𝐵)) < 𝑑))
2016, 19anbi12d 465 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) ↔ (𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑)))
219fveq1d 5488 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹𝑥 = 𝐵) → (𝑓𝑧) = (𝐹𝑧))
2221fvoveq1d 5864 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹𝑥 = 𝐵) → (abs‘((𝑓𝑧) − 𝑦)) = (abs‘((𝐹𝑧) − 𝑦)))
2322breq1d 3992 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑥 = 𝐵) → ((abs‘((𝑓𝑧) − 𝑦)) < 𝑒 ↔ (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))
2420, 23imbi12d 233 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑥 = 𝐵) → (((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2510, 24raleqbidv 2673 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑥 = 𝐵) → (∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2625rexbidv 2467 . . . . . . . . . 10 ((𝑓 = 𝐹𝑥 = 𝐵) → (∃𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2726ralbidv 2466 . . . . . . . . 9 ((𝑓 = 𝐹𝑥 = 𝐵) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))
2815, 27anbi12d 465 . . . . . . . 8 ((𝑓 = 𝐹𝑥 = 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)) ↔ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒))))
2913, 28anbi12d 465 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝐵) → (((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒))) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))))
3029rabbidv 2715 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝐵) → {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))} = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
3130, 2ovmpoga 5971 . . . . 5 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ ∧ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} ∈ V) → (𝐹 lim 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
323, 5, 8, 31syl3anc 1228 . . . 4 (𝑤 ∈ (𝐹 lim 𝐵) → (𝐹 lim 𝐵) = {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
331, 32eleqtrd 2245 . . 3 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))})
34 elrabi 2879 . . 3 (𝑤 ∈ {𝑦 ∈ ℂ ∣ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ (𝐵 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝐹((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − 𝑦)) < 𝑒)))} → 𝑤 ∈ ℂ)
3533, 34syl 14 . 2 (𝑤 ∈ (𝐹 lim 𝐵) → 𝑤 ∈ ℂ)
3635ssriv 3146 1 (𝐹 lim 𝐵) ⊆ ℂ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  Vcvv 2726  wss 3116   class class class wbr 3982  dom cdm 4604  wf 5184  cfv 5188  (class class class)co 5842  pm cpm 6615  cc 7751   < clt 7933  cmin 8069   # cap 8479  +crp 9589  abscabs 10939   lim climc 13263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pm 6617  df-limced 13265
This theorem is referenced by:  reldvg  13288  dvfvalap  13290  dvcl  13292
  Copyright terms: Public domain W3C validator