![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > limcrcl | GIF version |
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
limcrcl | β’ (πΆ β (πΉ limβ π΅) β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limced 14210 | . . 3 β’ limβ = (π β (β βpm β), π₯ β β β¦ {π¦ β β β£ ((π:dom πβΆβ β§ dom π β β) β§ (π₯ β β β§ βπ β β+ βπ β β+ βπ§ β dom π((π§ # π₯ β§ (absβ(π§ β π₯)) < π) β (absβ((πβπ§) β π¦)) < π)))}) | |
2 | 1 | elmpocl 6071 | . 2 β’ (πΆ β (πΉ limβ π΅) β (πΉ β (β βpm β) β§ π΅ β β)) |
3 | cnex 7937 | . . . . 5 β’ β β V | |
4 | 3, 3 | elpm2 6682 | . . . 4 β’ (πΉ β (β βpm β) β (πΉ:dom πΉβΆβ β§ dom πΉ β β)) |
5 | 4 | anbi1i 458 | . . 3 β’ ((πΉ β (β βpm β) β§ π΅ β β) β ((πΉ:dom πΉβΆβ β§ dom πΉ β β) β§ π΅ β β)) |
6 | df-3an 980 | . . 3 β’ ((πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β) β ((πΉ:dom πΉβΆβ β§ dom πΉ β β) β§ π΅ β β)) | |
7 | 5, 6 | bitr4i 187 | . 2 β’ ((πΉ β (β βpm β) β§ π΅ β β) β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β)) |
8 | 2, 7 | sylib 122 | 1 β’ (πΆ β (πΉ limβ π΅) β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 β wcel 2148 βwral 2455 βwrex 2456 {crab 2459 β wss 3131 class class class wbr 4005 dom cdm 4628 βΆwf 5214 βcfv 5218 (class class class)co 5877 βpm cpm 6651 βcc 7811 < clt 7994 β cmin 8130 # cap 8540 β+crp 9655 abscabs 11008 limβ climc 14208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pm 6653 df-limced 14210 |
This theorem is referenced by: limccl 14213 limcdifap 14216 limcimolemlt 14218 limcresi 14220 limccnpcntop 14229 limccnp2lem 14230 limccnp2cntop 14231 limccoap 14232 |
Copyright terms: Public domain | W3C validator |