Detailed syntax breakdown of Definition df-dvap
| Step | Hyp | Ref
| Expression |
| 1 | | cdv 14975 |
. 2
class
D |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cc 7894 |
. . . 4
class
ℂ |
| 5 | 4 | cpw 3606 |
. . 3
class 𝒫
ℂ |
| 6 | 2 | cv 1363 |
. . . 4
class 𝑠 |
| 7 | | cpm 6717 |
. . . 4
class
↑pm |
| 8 | 4, 6, 7 | co 5925 |
. . 3
class (ℂ
↑pm 𝑠) |
| 9 | | vx |
. . . 4
setvar 𝑥 |
| 10 | 3 | cv 1363 |
. . . . . 6
class 𝑓 |
| 11 | 10 | cdm 4664 |
. . . . 5
class dom 𝑓 |
| 12 | | cabs 11179 |
. . . . . . . . 9
class
abs |
| 13 | | cmin 8214 |
. . . . . . . . 9
class
− |
| 14 | 12, 13 | ccom 4668 |
. . . . . . . 8
class (abs
∘ − ) |
| 15 | | cmopn 14173 |
. . . . . . . 8
class
MetOpen |
| 16 | 14, 15 | cfv 5259 |
. . . . . . 7
class
(MetOpen‘(abs ∘ − )) |
| 17 | | crest 12941 |
. . . . . . 7
class
↾t |
| 18 | 16, 6, 17 | co 5925 |
. . . . . 6
class
((MetOpen‘(abs ∘ − )) ↾t 𝑠) |
| 19 | | cnt 14413 |
. . . . . 6
class
int |
| 20 | 18, 19 | cfv 5259 |
. . . . 5
class
(int‘((MetOpen‘(abs ∘ − )) ↾t
𝑠)) |
| 21 | 11, 20 | cfv 5259 |
. . . 4
class
((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑠))‘dom 𝑓) |
| 22 | 9 | cv 1363 |
. . . . . 6
class 𝑥 |
| 23 | 22 | csn 3623 |
. . . . 5
class {𝑥} |
| 24 | | vz |
. . . . . . 7
setvar 𝑧 |
| 25 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
| 26 | 25 | cv 1363 |
. . . . . . . . 9
class 𝑤 |
| 27 | | cap 8625 |
. . . . . . . . 9
class
# |
| 28 | 26, 22, 27 | wbr 4034 |
. . . . . . . 8
wff 𝑤 # 𝑥 |
| 29 | 28, 25, 11 | crab 2479 |
. . . . . . 7
class {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} |
| 30 | 24 | cv 1363 |
. . . . . . . . . 10
class 𝑧 |
| 31 | 30, 10 | cfv 5259 |
. . . . . . . . 9
class (𝑓‘𝑧) |
| 32 | 22, 10 | cfv 5259 |
. . . . . . . . 9
class (𝑓‘𝑥) |
| 33 | 31, 32, 13 | co 5925 |
. . . . . . . 8
class ((𝑓‘𝑧) − (𝑓‘𝑥)) |
| 34 | 30, 22, 13 | co 5925 |
. . . . . . . 8
class (𝑧 − 𝑥) |
| 35 | | cdiv 8716 |
. . . . . . . 8
class
/ |
| 36 | 33, 34, 35 | co 5925 |
. . . . . . 7
class (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) |
| 37 | 24, 29, 36 | cmpt 4095 |
. . . . . 6
class (𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) |
| 38 | | climc 14974 |
. . . . . 6
class
limℂ |
| 39 | 37, 22, 38 | co 5925 |
. . . . 5
class ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) |
| 40 | 23, 39 | cxp 4662 |
. . . 4
class ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 41 | 9, 21, 40 | ciun 3917 |
. . 3
class ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 42 | 2, 3, 5, 8, 41 | cmpo 5927 |
. 2
class (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
| 43 | 1, 42 | wceq 1364 |
1
wff D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |