Detailed syntax breakdown of Definition df-dvap
Step | Hyp | Ref
| Expression |
1 | | cdv 13418 |
. 2
class
D |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vf |
. . 3
setvar 𝑓 |
4 | | cc 7772 |
. . . 4
class
ℂ |
5 | 4 | cpw 3566 |
. . 3
class 𝒫
ℂ |
6 | 2 | cv 1347 |
. . . 4
class 𝑠 |
7 | | cpm 6627 |
. . . 4
class
↑pm |
8 | 4, 6, 7 | co 5853 |
. . 3
class (ℂ
↑pm 𝑠) |
9 | | vx |
. . . 4
setvar 𝑥 |
10 | 3 | cv 1347 |
. . . . . 6
class 𝑓 |
11 | 10 | cdm 4611 |
. . . . 5
class dom 𝑓 |
12 | | cabs 10961 |
. . . . . . . . 9
class
abs |
13 | | cmin 8090 |
. . . . . . . . 9
class
− |
14 | 12, 13 | ccom 4615 |
. . . . . . . 8
class (abs
∘ − ) |
15 | | cmopn 12779 |
. . . . . . . 8
class
MetOpen |
16 | 14, 15 | cfv 5198 |
. . . . . . 7
class
(MetOpen‘(abs ∘ − )) |
17 | | crest 12579 |
. . . . . . 7
class
↾t |
18 | 16, 6, 17 | co 5853 |
. . . . . 6
class
((MetOpen‘(abs ∘ − )) ↾t 𝑠) |
19 | | cnt 12887 |
. . . . . 6
class
int |
20 | 18, 19 | cfv 5198 |
. . . . 5
class
(int‘((MetOpen‘(abs ∘ − )) ↾t
𝑠)) |
21 | 11, 20 | cfv 5198 |
. . . 4
class
((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑠))‘dom 𝑓) |
22 | 9 | cv 1347 |
. . . . . 6
class 𝑥 |
23 | 22 | csn 3583 |
. . . . 5
class {𝑥} |
24 | | vz |
. . . . . . 7
setvar 𝑧 |
25 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
26 | 25 | cv 1347 |
. . . . . . . . 9
class 𝑤 |
27 | | cap 8500 |
. . . . . . . . 9
class
# |
28 | 26, 22, 27 | wbr 3989 |
. . . . . . . 8
wff 𝑤 # 𝑥 |
29 | 28, 25, 11 | crab 2452 |
. . . . . . 7
class {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} |
30 | 24 | cv 1347 |
. . . . . . . . . 10
class 𝑧 |
31 | 30, 10 | cfv 5198 |
. . . . . . . . 9
class (𝑓‘𝑧) |
32 | 22, 10 | cfv 5198 |
. . . . . . . . 9
class (𝑓‘𝑥) |
33 | 31, 32, 13 | co 5853 |
. . . . . . . 8
class ((𝑓‘𝑧) − (𝑓‘𝑥)) |
34 | 30, 22, 13 | co 5853 |
. . . . . . . 8
class (𝑧 − 𝑥) |
35 | | cdiv 8589 |
. . . . . . . 8
class
/ |
36 | 33, 34, 35 | co 5853 |
. . . . . . 7
class (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) |
37 | 24, 29, 36 | cmpt 4050 |
. . . . . 6
class (𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) |
38 | | climc 13417 |
. . . . . 6
class
limℂ |
39 | 37, 22, 38 | co 5853 |
. . . . 5
class ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) |
40 | 23, 39 | cxp 4609 |
. . . 4
class ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
41 | 9, 21, 40 | ciun 3873 |
. . 3
class ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
42 | 2, 3, 5, 8, 41 | cmpo 5855 |
. 2
class (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
43 | 1, 42 | wceq 1348 |
1
wff D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |