Detailed syntax breakdown of Definition df-dvap
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cdv 14891 | 
. 2
class 
D | 
| 2 |   | vs | 
. . 3
setvar 𝑠 | 
| 3 |   | vf | 
. . 3
setvar 𝑓 | 
| 4 |   | cc 7877 | 
. . . 4
class
ℂ | 
| 5 | 4 | cpw 3605 | 
. . 3
class 𝒫
ℂ | 
| 6 | 2 | cv 1363 | 
. . . 4
class 𝑠 | 
| 7 |   | cpm 6708 | 
. . . 4
class 
↑pm | 
| 8 | 4, 6, 7 | co 5922 | 
. . 3
class (ℂ
↑pm 𝑠) | 
| 9 |   | vx | 
. . . 4
setvar 𝑥 | 
| 10 | 3 | cv 1363 | 
. . . . . 6
class 𝑓 | 
| 11 | 10 | cdm 4663 | 
. . . . 5
class dom 𝑓 | 
| 12 |   | cabs 11162 | 
. . . . . . . . 9
class
abs | 
| 13 |   | cmin 8197 | 
. . . . . . . . 9
class 
− | 
| 14 | 12, 13 | ccom 4667 | 
. . . . . . . 8
class (abs
∘ − ) | 
| 15 |   | cmopn 14097 | 
. . . . . . . 8
class
MetOpen | 
| 16 | 14, 15 | cfv 5258 | 
. . . . . . 7
class
(MetOpen‘(abs ∘ − )) | 
| 17 |   | crest 12910 | 
. . . . . . 7
class 
↾t | 
| 18 | 16, 6, 17 | co 5922 | 
. . . . . 6
class
((MetOpen‘(abs ∘ − )) ↾t 𝑠) | 
| 19 |   | cnt 14329 | 
. . . . . 6
class
int | 
| 20 | 18, 19 | cfv 5258 | 
. . . . 5
class
(int‘((MetOpen‘(abs ∘ − )) ↾t
𝑠)) | 
| 21 | 11, 20 | cfv 5258 | 
. . . 4
class
((int‘((MetOpen‘(abs ∘ − )) ↾t
𝑠))‘dom 𝑓) | 
| 22 | 9 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 23 | 22 | csn 3622 | 
. . . . 5
class {𝑥} | 
| 24 |   | vz | 
. . . . . . 7
setvar 𝑧 | 
| 25 |   | vw | 
. . . . . . . . . 10
setvar 𝑤 | 
| 26 | 25 | cv 1363 | 
. . . . . . . . 9
class 𝑤 | 
| 27 |   | cap 8608 | 
. . . . . . . . 9
class 
# | 
| 28 | 26, 22, 27 | wbr 4033 | 
. . . . . . . 8
wff 𝑤 # 𝑥 | 
| 29 | 28, 25, 11 | crab 2479 | 
. . . . . . 7
class {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} | 
| 30 | 24 | cv 1363 | 
. . . . . . . . . 10
class 𝑧 | 
| 31 | 30, 10 | cfv 5258 | 
. . . . . . . . 9
class (𝑓‘𝑧) | 
| 32 | 22, 10 | cfv 5258 | 
. . . . . . . . 9
class (𝑓‘𝑥) | 
| 33 | 31, 32, 13 | co 5922 | 
. . . . . . . 8
class ((𝑓‘𝑧) − (𝑓‘𝑥)) | 
| 34 | 30, 22, 13 | co 5922 | 
. . . . . . . 8
class (𝑧 − 𝑥) | 
| 35 |   | cdiv 8699 | 
. . . . . . . 8
class 
/ | 
| 36 | 33, 34, 35 | co 5922 | 
. . . . . . 7
class (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥)) | 
| 37 | 24, 29, 36 | cmpt 4094 | 
. . . . . 6
class (𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) | 
| 38 |   | climc 14890 | 
. . . . . 6
class 
limℂ | 
| 39 | 37, 22, 38 | co 5922 | 
. . . . 5
class ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) | 
| 40 | 23, 39 | cxp 4661 | 
. . . 4
class ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | 
| 41 | 9, 21, 40 | ciun 3916 | 
. . 3
class ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) | 
| 42 | 2, 3, 5, 8, 41 | cmpo 5924 | 
. 2
class (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) | 
| 43 | 1, 42 | wceq 1364 | 
1
wff  D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪
𝑥 ∈
((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |