ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-dvap GIF version

Definition df-dvap 13420
Description: Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = ℂ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
Assertion
Ref Expression
df-dvap D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
Distinct variable group:   𝑓,𝑠,𝑥,𝑧,𝑤

Detailed syntax breakdown of Definition df-dvap
StepHypRef Expression
1 cdv 13418 . 2 class D
2 vs . . 3 setvar 𝑠
3 vf . . 3 setvar 𝑓
4 cc 7772 . . . 4 class
54cpw 3566 . . 3 class 𝒫 ℂ
62cv 1347 . . . 4 class 𝑠
7 cpm 6627 . . . 4 class pm
84, 6, 7co 5853 . . 3 class (ℂ ↑pm 𝑠)
9 vx . . . 4 setvar 𝑥
103cv 1347 . . . . . 6 class 𝑓
1110cdm 4611 . . . . 5 class dom 𝑓
12 cabs 10961 . . . . . . . . 9 class abs
13 cmin 8090 . . . . . . . . 9 class
1412, 13ccom 4615 . . . . . . . 8 class (abs ∘ − )
15 cmopn 12779 . . . . . . . 8 class MetOpen
1614, 15cfv 5198 . . . . . . 7 class (MetOpen‘(abs ∘ − ))
17 crest 12579 . . . . . . 7 class t
1816, 6, 17co 5853 . . . . . 6 class ((MetOpen‘(abs ∘ − )) ↾t 𝑠)
19 cnt 12887 . . . . . 6 class int
2018, 19cfv 5198 . . . . 5 class (int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))
2111, 20cfv 5198 . . . 4 class ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)
229cv 1347 . . . . . 6 class 𝑥
2322csn 3583 . . . . 5 class {𝑥}
24 vz . . . . . . 7 setvar 𝑧
25 vw . . . . . . . . . 10 setvar 𝑤
2625cv 1347 . . . . . . . . 9 class 𝑤
27 cap 8500 . . . . . . . . 9 class #
2826, 22, 27wbr 3989 . . . . . . . 8 wff 𝑤 # 𝑥
2928, 25, 11crab 2452 . . . . . . 7 class {𝑤 ∈ dom 𝑓𝑤 # 𝑥}
3024cv 1347 . . . . . . . . . 10 class 𝑧
3130, 10cfv 5198 . . . . . . . . 9 class (𝑓𝑧)
3222, 10cfv 5198 . . . . . . . . 9 class (𝑓𝑥)
3331, 32, 13co 5853 . . . . . . . 8 class ((𝑓𝑧) − (𝑓𝑥))
3430, 22, 13co 5853 . . . . . . . 8 class (𝑧𝑥)
35 cdiv 8589 . . . . . . . 8 class /
3633, 34, 35co 5853 . . . . . . 7 class (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))
3724, 29, 36cmpt 4050 . . . . . 6 class (𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥)))
38 climc 13417 . . . . . 6 class lim
3937, 22, 38co 5853 . . . . 5 class ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)
4023, 39cxp 4609 . . . 4 class ({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
419, 21, 40ciun 3873 . . 3 class 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥))
422, 3, 5, 8, 41cmpo 5855 . 2 class (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
431, 42wceq 1348 1 wff D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
Colors of variables: wff set class
This definition is referenced by:  reldvg  13442  dvfvalap  13444
  Copyright terms: Public domain W3C validator