![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmrcl | GIF version |
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 13775 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
2 | 1 | dmmptss 5127 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
3 | df-br 4006 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡‘𝐽)) | |
4 | 1 | funmpt2 5257 | . . . . 5 ⊢ Fun ⇝𝑡 |
5 | funrel 5235 | . . . . 5 ⊢ (Fun ⇝𝑡 → Rel ⇝𝑡) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Rel ⇝𝑡 |
7 | relelfvdm 5549 | . . . 4 ⊢ ((Rel ⇝𝑡 ∧ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡‘𝐽)) → 𝐽 ∈ dom ⇝𝑡) | |
8 | 6, 7 | mpan 424 | . . 3 ⊢ (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) |
9 | 3, 8 | sylbi 121 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
10 | 2, 9 | sselid 3155 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ⟨cop 3597 ∪ cuni 3811 class class class wbr 4005 {copab 4065 dom cdm 4628 ran crn 4629 ↾ cres 4630 Rel wrel 4633 Fun wfun 5212 ⟶wf 5214 ‘cfv 5218 (class class class)co 5877 ↑pm cpm 6651 ℂcc 7811 ℤ≥cuz 9530 Topctop 13582 ⇝𝑡clm 13772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fv 5226 df-lm 13775 |
This theorem is referenced by: lmcvg 13802 lmtopcnp 13835 |
Copyright terms: Public domain | W3C validator |