| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmrcl | GIF version | ||
| Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 14706 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 2 | 1 | dmmptss 5184 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
| 3 | df-br 4048 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) | |
| 4 | 1 | funmpt2 5315 | . . . . 5 ⊢ Fun ⇝𝑡 |
| 5 | funrel 5293 | . . . . 5 ⊢ (Fun ⇝𝑡 → Rel ⇝𝑡) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Rel ⇝𝑡 |
| 7 | relelfvdm 5615 | . . . 4 ⊢ ((Rel ⇝𝑡 ∧ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) → 𝐽 ∈ dom ⇝𝑡) | |
| 8 | 6, 7 | mpan 424 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) |
| 9 | 3, 8 | sylbi 121 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
| 10 | 2, 9 | sselid 3192 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 〈cop 3637 ∪ cuni 3852 class class class wbr 4047 {copab 4108 dom cdm 4679 ran crn 4680 ↾ cres 4681 Rel wrel 4684 Fun wfun 5270 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ↑pm cpm 6743 ℂcc 7930 ℤ≥cuz 9655 Topctop 14513 ⇝𝑡clm 14703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fv 5284 df-lm 14706 |
| This theorem is referenced by: lmcvg 14733 lmtopcnp 14766 |
| Copyright terms: Public domain | W3C validator |