| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmrcl | GIF version | ||
| Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 14829 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 2 | 1 | dmmptss 5201 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
| 3 | df-br 4063 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) | |
| 4 | 1 | funmpt2 5333 | . . . . 5 ⊢ Fun ⇝𝑡 |
| 5 | funrel 5311 | . . . . 5 ⊢ (Fun ⇝𝑡 → Rel ⇝𝑡) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Rel ⇝𝑡 |
| 7 | relelfvdm 5635 | . . . 4 ⊢ ((Rel ⇝𝑡 ∧ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) → 𝐽 ∈ dom ⇝𝑡) | |
| 8 | 6, 7 | mpan 424 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) |
| 9 | 3, 8 | sylbi 121 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
| 10 | 2, 9 | sselid 3202 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 〈cop 3649 ∪ cuni 3867 class class class wbr 4062 {copab 4123 dom cdm 4696 ran crn 4697 ↾ cres 4698 Rel wrel 4701 Fun wfun 5288 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ↑pm cpm 6766 ℂcc 7965 ℤ≥cuz 9690 Topctop 14636 ⇝𝑡clm 14826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fv 5302 df-lm 14829 |
| This theorem is referenced by: lmcvg 14856 lmtopcnp 14889 |
| Copyright terms: Public domain | W3C validator |