![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmrcl | GIF version |
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 12202 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
2 | 1 | dmmptss 4993 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
3 | df-br 3896 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) | |
4 | 1 | funmpt2 5120 | . . . . 5 ⊢ Fun ⇝𝑡 |
5 | funrel 5098 | . . . . 5 ⊢ (Fun ⇝𝑡 → Rel ⇝𝑡) | |
6 | 4, 5 | ax-mp 7 | . . . 4 ⊢ Rel ⇝𝑡 |
7 | relelfvdm 5407 | . . . 4 ⊢ ((Rel ⇝𝑡 ∧ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) → 𝐽 ∈ dom ⇝𝑡) | |
8 | 6, 7 | mpan 418 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) |
9 | 3, 8 | sylbi 120 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
10 | 2, 9 | sseldi 3061 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 945 ∈ wcel 1463 ∀wral 2390 ∃wrex 2391 〈cop 3496 ∪ cuni 3702 class class class wbr 3895 {copab 3948 dom cdm 4499 ran crn 4500 ↾ cres 4501 Rel wrel 4504 Fun wfun 5075 ⟶wf 5077 ‘cfv 5081 (class class class)co 5728 ↑pm cpm 6497 ℂcc 7545 ℤ≥cuz 9228 Topctop 12007 ⇝𝑡clm 12199 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fv 5089 df-lm 12202 |
This theorem is referenced by: lmcvg 12228 lmtopcnp 12261 |
Copyright terms: Public domain | W3C validator |