| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmrcl | GIF version | ||
| Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 14872 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
| 2 | 1 | dmmptss 5225 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
| 3 | df-br 4084 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) | |
| 4 | 1 | funmpt2 5357 | . . . . 5 ⊢ Fun ⇝𝑡 |
| 5 | funrel 5335 | . . . . 5 ⊢ (Fun ⇝𝑡 → Rel ⇝𝑡) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Rel ⇝𝑡 |
| 7 | relelfvdm 5661 | . . . 4 ⊢ ((Rel ⇝𝑡 ∧ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) → 𝐽 ∈ dom ⇝𝑡) | |
| 8 | 6, 7 | mpan 424 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) |
| 9 | 3, 8 | sylbi 121 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
| 10 | 2, 9 | sselid 3222 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 〈cop 3669 ∪ cuni 3888 class class class wbr 4083 {copab 4144 dom cdm 4719 ran crn 4720 ↾ cres 4721 Rel wrel 4724 Fun wfun 5312 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ↑pm cpm 6804 ℂcc 8005 ℤ≥cuz 9730 Topctop 14679 ⇝𝑡clm 14869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 df-lm 14872 |
| This theorem is referenced by: lmcvg 14899 lmtopcnp 14932 |
| Copyright terms: Public domain | W3C validator |