Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmrcl | GIF version |
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
lmrcl | ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 12830 | . . 3 ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | |
2 | 1 | dmmptss 5100 | . 2 ⊢ dom ⇝𝑡 ⊆ Top |
3 | df-br 3983 | . . 3 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) | |
4 | 1 | funmpt2 5227 | . . . . 5 ⊢ Fun ⇝𝑡 |
5 | funrel 5205 | . . . . 5 ⊢ (Fun ⇝𝑡 → Rel ⇝𝑡) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ Rel ⇝𝑡 |
7 | relelfvdm 5518 | . . . 4 ⊢ ((Rel ⇝𝑡 ∧ 〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽)) → 𝐽 ∈ dom ⇝𝑡) | |
8 | 6, 7 | mpan 421 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (⇝𝑡‘𝐽) → 𝐽 ∈ dom ⇝𝑡) |
9 | 3, 8 | sylbi 120 | . 2 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ dom ⇝𝑡) |
10 | 2, 9 | sselid 3140 | 1 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 〈cop 3579 ∪ cuni 3789 class class class wbr 3982 {copab 4042 dom cdm 4604 ran crn 4605 ↾ cres 4606 Rel wrel 4609 Fun wfun 5182 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ↑pm cpm 6615 ℂcc 7751 ℤ≥cuz 9466 Topctop 12635 ⇝𝑡clm 12827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 df-lm 12830 |
This theorem is referenced by: lmcvg 12857 lmtopcnp 12890 |
Copyright terms: Public domain | W3C validator |