ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl GIF version

Theorem lmrcl 12985
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)

Proof of Theorem lmrcl
Dummy variables 𝑗 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 12984 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21dmmptss 5107 . 2 dom ⇝𝑡 ⊆ Top
3 df-br 3990 . . 3 (𝐹(⇝𝑡𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽))
41funmpt2 5237 . . . . 5 Fun ⇝𝑡
5 funrel 5215 . . . . 5 (Fun ⇝𝑡 → Rel ⇝𝑡)
64, 5ax-mp 5 . . . 4 Rel ⇝𝑡
7 relelfvdm 5528 . . . 4 ((Rel ⇝𝑡 ∧ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽)) → 𝐽 ∈ dom ⇝𝑡)
86, 7mpan 422 . . 3 (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽) → 𝐽 ∈ dom ⇝𝑡)
93, 8sylbi 120 . 2 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ dom ⇝𝑡)
102, 9sselid 3145 1 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973  wcel 2141  wral 2448  wrex 2449  cop 3586   cuni 3796   class class class wbr 3989  {copab 4049  dom cdm 4611  ran crn 4612  cres 4613  Rel wrel 4616  Fun wfun 5192  wf 5194  cfv 5198  (class class class)co 5853  pm cpm 6627  cc 7772  cuz 9487  Topctop 12789  𝑡clm 12981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fv 5206  df-lm 12984
This theorem is referenced by:  lmcvg  13011  lmtopcnp  13044
  Copyright terms: Public domain W3C validator