ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl GIF version

Theorem lmrcl 14830
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)

Proof of Theorem lmrcl
Dummy variables 𝑗 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 14829 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21dmmptss 5201 . 2 dom ⇝𝑡 ⊆ Top
3 df-br 4063 . . 3 (𝐹(⇝𝑡𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽))
41funmpt2 5333 . . . . 5 Fun ⇝𝑡
5 funrel 5311 . . . . 5 (Fun ⇝𝑡 → Rel ⇝𝑡)
64, 5ax-mp 5 . . . 4 Rel ⇝𝑡
7 relelfvdm 5635 . . . 4 ((Rel ⇝𝑡 ∧ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽)) → 𝐽 ∈ dom ⇝𝑡)
86, 7mpan 424 . . 3 (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽) → 𝐽 ∈ dom ⇝𝑡)
93, 8sylbi 121 . 2 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ dom ⇝𝑡)
102, 9sselid 3202 1 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 983  wcel 2180  wral 2488  wrex 2489  cop 3649   cuni 3867   class class class wbr 4062  {copab 4123  dom cdm 4696  ran crn 4697  cres 4698  Rel wrel 4701  Fun wfun 5288  wf 5290  cfv 5294  (class class class)co 5974  pm cpm 6766  cc 7965  cuz 9690  Topctop 14636  𝑡clm 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fv 5302  df-lm 14829
This theorem is referenced by:  lmcvg  14856  lmtopcnp  14889
  Copyright terms: Public domain W3C validator