ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl GIF version

Theorem lmrcl 14511
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)

Proof of Theorem lmrcl
Dummy variables 𝑗 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 14510 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21dmmptss 5167 . 2 dom ⇝𝑡 ⊆ Top
3 df-br 4035 . . 3 (𝐹(⇝𝑡𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽))
41funmpt2 5298 . . . . 5 Fun ⇝𝑡
5 funrel 5276 . . . . 5 (Fun ⇝𝑡 → Rel ⇝𝑡)
64, 5ax-mp 5 . . . 4 Rel ⇝𝑡
7 relelfvdm 5593 . . . 4 ((Rel ⇝𝑡 ∧ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽)) → 𝐽 ∈ dom ⇝𝑡)
86, 7mpan 424 . . 3 (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽) → 𝐽 ∈ dom ⇝𝑡)
93, 8sylbi 121 . 2 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ dom ⇝𝑡)
102, 9sselid 3182 1 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2167  wral 2475  wrex 2476  cop 3626   cuni 3840   class class class wbr 4034  {copab 4094  dom cdm 4664  ran crn 4665  cres 4666  Rel wrel 4669  Fun wfun 5253  wf 5255  cfv 5259  (class class class)co 5925  pm cpm 6717  cc 7894  cuz 9618  Topctop 14317  𝑡clm 14507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fv 5267  df-lm 14510
This theorem is referenced by:  lmcvg  14537  lmtopcnp  14570
  Copyright terms: Public domain W3C validator