ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl GIF version

Theorem lmrcl 12203
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)

Proof of Theorem lmrcl
Dummy variables 𝑗 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 12202 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21dmmptss 4993 . 2 dom ⇝𝑡 ⊆ Top
3 df-br 3896 . . 3 (𝐹(⇝𝑡𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽))
41funmpt2 5120 . . . . 5 Fun ⇝𝑡
5 funrel 5098 . . . . 5 (Fun ⇝𝑡 → Rel ⇝𝑡)
64, 5ax-mp 7 . . . 4 Rel ⇝𝑡
7 relelfvdm 5407 . . . 4 ((Rel ⇝𝑡 ∧ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽)) → 𝐽 ∈ dom ⇝𝑡)
86, 7mpan 418 . . 3 (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽) → 𝐽 ∈ dom ⇝𝑡)
93, 8sylbi 120 . 2 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ dom ⇝𝑡)
102, 9sseldi 3061 1 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 945  wcel 1463  wral 2390  wrex 2391  cop 3496   cuni 3702   class class class wbr 3895  {copab 3948  dom cdm 4499  ran crn 4500  cres 4501  Rel wrel 4504  Fun wfun 5075  wf 5077  cfv 5081  (class class class)co 5728  pm cpm 6497  cc 7545  cuz 9228  Topctop 12007  𝑡clm 12199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fv 5089  df-lm 12202
This theorem is referenced by:  lmcvg  12228  lmtopcnp  12261
  Copyright terms: Public domain W3C validator