ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl GIF version

Theorem lmrcl 14427
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)

Proof of Theorem lmrcl
Dummy variables 𝑗 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 14426 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21dmmptss 5166 . 2 dom ⇝𝑡 ⊆ Top
3 df-br 4034 . . 3 (𝐹(⇝𝑡𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽))
41funmpt2 5297 . . . . 5 Fun ⇝𝑡
5 funrel 5275 . . . . 5 (Fun ⇝𝑡 → Rel ⇝𝑡)
64, 5ax-mp 5 . . . 4 Rel ⇝𝑡
7 relelfvdm 5590 . . . 4 ((Rel ⇝𝑡 ∧ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽)) → 𝐽 ∈ dom ⇝𝑡)
86, 7mpan 424 . . 3 (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽) → 𝐽 ∈ dom ⇝𝑡)
93, 8sylbi 121 . 2 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ dom ⇝𝑡)
102, 9sselid 3181 1 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wcel 2167  wral 2475  wrex 2476  cop 3625   cuni 3839   class class class wbr 4033  {copab 4093  dom cdm 4663  ran crn 4664  cres 4665  Rel wrel 4668  Fun wfun 5252  wf 5254  cfv 5258  (class class class)co 5922  pm cpm 6708  cc 7877  cuz 9601  Topctop 14233  𝑡clm 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fv 5266  df-lm 14426
This theorem is referenced by:  lmcvg  14453  lmtopcnp  14486
  Copyright terms: Public domain W3C validator