ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lm Unicode version

Definition df-lm 14777
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although  f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function  ( x  e.  RR  |->  ( sin `  ( pi  x.  x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable group:    f, j, x, y, u

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 14774 . 2  class  ~~> t
2 vj . . 3  setvar  j
3 ctop 14584 . . 3  class  Top
4 vf . . . . . . 7  setvar  f
54cv 1372 . . . . . 6  class  f
62cv 1372 . . . . . . . 8  class  j
76cuni 3864 . . . . . . 7  class  U. j
8 cc 7958 . . . . . . 7  class  CC
9 cpm 6759 . . . . . . 7  class  ^pm
107, 8, 9co 5967 . . . . . 6  class  ( U. j  ^pm  CC )
115, 10wcel 2178 . . . . 5  wff  f  e.  ( U. j  ^pm  CC )
12 vx . . . . . . 7  setvar  x
1312cv 1372 . . . . . 6  class  x
1413, 7wcel 2178 . . . . 5  wff  x  e. 
U. j
15 vu . . . . . . . 8  setvar  u
1612, 15wel 2179 . . . . . . 7  wff  x  e.  u
17 vy . . . . . . . . . 10  setvar  y
1817cv 1372 . . . . . . . . 9  class  y
1915cv 1372 . . . . . . . . 9  class  u
205, 18cres 4695 . . . . . . . . 9  class  ( f  |`  y )
2118, 19, 20wf 5286 . . . . . . . 8  wff  ( f  |`  y ) : y --> u
22 cuz 9683 . . . . . . . . 9  class  ZZ>=
2322crn 4694 . . . . . . . 8  class  ran  ZZ>=
2421, 17, 23wrex 2487 . . . . . . 7  wff  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u
2516, 24wi 4 . . . . . 6  wff  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2625, 15, 6wral 2486 . . . . 5  wff  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2711, 14, 26w3a 981 . . . 4  wff  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) )
2827, 4, 12copab 4120 . . 3  class  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }
292, 3, 28cmpt 4121 . 2  class  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
301, 29wceq 1373 1  wff  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
This definition is referenced by:  lmrcl  14778  lmfval  14779
  Copyright terms: Public domain W3C validator