ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lm Unicode version

Definition df-lm 12830
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although  f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function  ( x  e.  RR  |->  ( sin `  ( pi  x.  x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable group:    f, j, x, y, u

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 12827 . 2  class  ~~> t
2 vj . . 3  setvar  j
3 ctop 12635 . . 3  class  Top
4 vf . . . . . . 7  setvar  f
54cv 1342 . . . . . 6  class  f
62cv 1342 . . . . . . . 8  class  j
76cuni 3789 . . . . . . 7  class  U. j
8 cc 7751 . . . . . . 7  class  CC
9 cpm 6615 . . . . . . 7  class  ^pm
107, 8, 9co 5842 . . . . . 6  class  ( U. j  ^pm  CC )
115, 10wcel 2136 . . . . 5  wff  f  e.  ( U. j  ^pm  CC )
12 vx . . . . . . 7  setvar  x
1312cv 1342 . . . . . 6  class  x
1413, 7wcel 2136 . . . . 5  wff  x  e. 
U. j
15 vu . . . . . . . 8  setvar  u
1612, 15wel 2137 . . . . . . 7  wff  x  e.  u
17 vy . . . . . . . . . 10  setvar  y
1817cv 1342 . . . . . . . . 9  class  y
1915cv 1342 . . . . . . . . 9  class  u
205, 18cres 4606 . . . . . . . . 9  class  ( f  |`  y )
2118, 19, 20wf 5184 . . . . . . . 8  wff  ( f  |`  y ) : y --> u
22 cuz 9466 . . . . . . . . 9  class  ZZ>=
2322crn 4605 . . . . . . . 8  class  ran  ZZ>=
2421, 17, 23wrex 2445 . . . . . . 7  wff  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u
2516, 24wi 4 . . . . . 6  wff  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2625, 15, 6wral 2444 . . . . 5  wff  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2711, 14, 26w3a 968 . . . 4  wff  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) )
2827, 4, 12copab 4042 . . 3  class  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }
292, 3, 28cmpt 4043 . 2  class  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
301, 29wceq 1343 1  wff  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
This definition is referenced by:  lmrcl  12831  lmfval  12832
  Copyright terms: Public domain W3C validator