ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lm Unicode version

Definition df-lm 14369
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although  f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function  ( x  e.  RR  |->  ( sin `  ( pi  x.  x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable group:    f, j, x, y, u

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 14366 . 2  class  ~~> t
2 vj . . 3  setvar  j
3 ctop 14176 . . 3  class  Top
4 vf . . . . . . 7  setvar  f
54cv 1363 . . . . . 6  class  f
62cv 1363 . . . . . . . 8  class  j
76cuni 3836 . . . . . . 7  class  U. j
8 cc 7872 . . . . . . 7  class  CC
9 cpm 6705 . . . . . . 7  class  ^pm
107, 8, 9co 5919 . . . . . 6  class  ( U. j  ^pm  CC )
115, 10wcel 2164 . . . . 5  wff  f  e.  ( U. j  ^pm  CC )
12 vx . . . . . . 7  setvar  x
1312cv 1363 . . . . . 6  class  x
1413, 7wcel 2164 . . . . 5  wff  x  e. 
U. j
15 vu . . . . . . . 8  setvar  u
1612, 15wel 2165 . . . . . . 7  wff  x  e.  u
17 vy . . . . . . . . . 10  setvar  y
1817cv 1363 . . . . . . . . 9  class  y
1915cv 1363 . . . . . . . . 9  class  u
205, 18cres 4662 . . . . . . . . 9  class  ( f  |`  y )
2118, 19, 20wf 5251 . . . . . . . 8  wff  ( f  |`  y ) : y --> u
22 cuz 9595 . . . . . . . . 9  class  ZZ>=
2322crn 4661 . . . . . . . 8  class  ran  ZZ>=
2421, 17, 23wrex 2473 . . . . . . 7  wff  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u
2516, 24wi 4 . . . . . 6  wff  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2625, 15, 6wral 2472 . . . . 5  wff  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2711, 14, 26w3a 980 . . . 4  wff  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) )
2827, 4, 12copab 4090 . . 3  class  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }
292, 3, 28cmpt 4091 . 2  class  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
301, 29wceq 1364 1  wff  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
This definition is referenced by:  lmrcl  14370  lmfval  14371
  Copyright terms: Public domain W3C validator