ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lm Unicode version

Definition df-lm 14426
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although  f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function  ( x  e.  RR  |->  ( sin `  ( pi  x.  x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable group:    f, j, x, y, u

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 14423 . 2  class  ~~> t
2 vj . . 3  setvar  j
3 ctop 14233 . . 3  class  Top
4 vf . . . . . . 7  setvar  f
54cv 1363 . . . . . 6  class  f
62cv 1363 . . . . . . . 8  class  j
76cuni 3839 . . . . . . 7  class  U. j
8 cc 7877 . . . . . . 7  class  CC
9 cpm 6708 . . . . . . 7  class  ^pm
107, 8, 9co 5922 . . . . . 6  class  ( U. j  ^pm  CC )
115, 10wcel 2167 . . . . 5  wff  f  e.  ( U. j  ^pm  CC )
12 vx . . . . . . 7  setvar  x
1312cv 1363 . . . . . 6  class  x
1413, 7wcel 2167 . . . . 5  wff  x  e. 
U. j
15 vu . . . . . . . 8  setvar  u
1612, 15wel 2168 . . . . . . 7  wff  x  e.  u
17 vy . . . . . . . . . 10  setvar  y
1817cv 1363 . . . . . . . . 9  class  y
1915cv 1363 . . . . . . . . 9  class  u
205, 18cres 4665 . . . . . . . . 9  class  ( f  |`  y )
2118, 19, 20wf 5254 . . . . . . . 8  wff  ( f  |`  y ) : y --> u
22 cuz 9601 . . . . . . . . 9  class  ZZ>=
2322crn 4664 . . . . . . . 8  class  ran  ZZ>=
2421, 17, 23wrex 2476 . . . . . . 7  wff  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u
2516, 24wi 4 . . . . . 6  wff  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2625, 15, 6wral 2475 . . . . 5  wff  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2711, 14, 26w3a 980 . . . 4  wff  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) )
2827, 4, 12copab 4093 . . 3  class  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }
292, 3, 28cmpt 4094 . 2  class  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
301, 29wceq 1364 1  wff  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
This definition is referenced by:  lmrcl  14427  lmfval  14428
  Copyright terms: Public domain W3C validator