ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lm Unicode version

Definition df-lm 14864
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although  f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function  ( x  e.  RR  |->  ( sin `  ( pi  x.  x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable group:    f, j, x, y, u

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 14861 . 2  class  ~~> t
2 vj . . 3  setvar  j
3 ctop 14671 . . 3  class  Top
4 vf . . . . . . 7  setvar  f
54cv 1394 . . . . . 6  class  f
62cv 1394 . . . . . . . 8  class  j
76cuni 3888 . . . . . . 7  class  U. j
8 cc 7997 . . . . . . 7  class  CC
9 cpm 6796 . . . . . . 7  class  ^pm
107, 8, 9co 6001 . . . . . 6  class  ( U. j  ^pm  CC )
115, 10wcel 2200 . . . . 5  wff  f  e.  ( U. j  ^pm  CC )
12 vx . . . . . . 7  setvar  x
1312cv 1394 . . . . . 6  class  x
1413, 7wcel 2200 . . . . 5  wff  x  e. 
U. j
15 vu . . . . . . . 8  setvar  u
1612, 15wel 2201 . . . . . . 7  wff  x  e.  u
17 vy . . . . . . . . . 10  setvar  y
1817cv 1394 . . . . . . . . 9  class  y
1915cv 1394 . . . . . . . . 9  class  u
205, 18cres 4721 . . . . . . . . 9  class  ( f  |`  y )
2118, 19, 20wf 5314 . . . . . . . 8  wff  ( f  |`  y ) : y --> u
22 cuz 9722 . . . . . . . . 9  class  ZZ>=
2322crn 4720 . . . . . . . 8  class  ran  ZZ>=
2421, 17, 23wrex 2509 . . . . . . 7  wff  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u
2516, 24wi 4 . . . . . 6  wff  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2625, 15, 6wral 2508 . . . . 5  wff  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u )
2711, 14, 26w3a 1002 . . . 4  wff  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) )
2827, 4, 12copab 4144 . . 3  class  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }
292, 3, 28cmpt 4145 . 2  class  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
301, 29wceq 1395 1  wff  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
This definition is referenced by:  lmrel  14865  lmrcl  14866  lmfval  14867
  Copyright terms: Public domain W3C validator