Step | Hyp | Ref
| Expression |
1 | | df-lm 12830 |
. . 3
⊢
⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
2 | 1 | a1i 9 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) →
⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))})) |
3 | | simpr 109 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽) |
4 | 3 | unieqd 3800 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ∪ 𝑗 = ∪
𝐽) |
5 | | toponuni 12653 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 5 | adantr 274 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑋 = ∪ 𝐽) |
7 | 4, 6 | eqtr4d 2201 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
8 | 7 | oveq1d 5857 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∪ 𝑗 ↑pm
ℂ) = (𝑋
↑pm ℂ)) |
9 | 8 | eleq2d 2236 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ↔ 𝑓 ∈
(𝑋
↑pm ℂ))) |
10 | 7 | eleq2d 2236 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑥 ∈ ∪ 𝑗 ↔ 𝑥 ∈ 𝑋)) |
11 | 3 | raleqdv 2667 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))) |
12 | 9, 10, 11 | 3anbi123d 1302 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ((𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)) ↔ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)))) |
13 | 12 | opabbidv 4048 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
14 | | topontop 12652 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
15 | | df-3an 970 |
. . . . 5
⊢ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)) ↔ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))) |
16 | 15 | opabbii 4049 |
. . . 4
⊢
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} |
17 | | opabssxp 4678 |
. . . 4
⊢
{〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ⊆ ((𝑋 ↑pm ℂ) ×
𝑋) |
18 | 16, 17 | eqsstri 3174 |
. . 3
⊢
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ⊆ ((𝑋 ↑pm ℂ) ×
𝑋) |
19 | | fnpm 6622 |
. . . . 5
⊢
↑pm Fn (V × V) |
20 | | toponmax 12663 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
21 | 20 | elexd 2739 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V) |
22 | | cnex 7877 |
. . . . . 6
⊢ ℂ
∈ V |
23 | 22 | a1i 9 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → ℂ ∈
V) |
24 | | fnovex 5875 |
. . . . 5
⊢ ((
↑pm Fn (V × V) ∧ 𝑋 ∈ V ∧ ℂ ∈ V) →
(𝑋
↑pm ℂ) ∈ V) |
25 | 19, 21, 23, 24 | mp3an2i 1332 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ↑pm ℂ) ∈
V) |
26 | | xpexg 4718 |
. . . 4
⊢ (((𝑋 ↑pm
ℂ) ∈ V ∧ 𝑋
∈ 𝐽) → ((𝑋 ↑pm
ℂ) × 𝑋) ∈
V) |
27 | 25, 20, 26 | syl2anc 409 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑋 ↑pm ℂ) ×
𝑋) ∈
V) |
28 | | ssexg 4121 |
. . 3
⊢
(({〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ⊆ ((𝑋 ↑pm ℂ) ×
𝑋) ∧ ((𝑋 ↑pm
ℂ) × 𝑋) ∈
V) → {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ∈ V) |
29 | 18, 27, 28 | sylancr 411 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ∈ V) |
30 | 2, 13, 14, 29 | fvmptd 5567 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |