ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfval GIF version

Theorem lmfval 14708
Description: The relation "sequence 𝑓 converges to point 𝑦 " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
lmfval (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Distinct variable groups:   𝑥,𝑓,𝑦,𝑋   𝑢,𝑓,𝐽,𝑥,𝑦
Allowed substitution hint:   𝑋(𝑢)

Proof of Theorem lmfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-lm 14706 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21a1i 9 . 2 (𝐽 ∈ (TopOn‘𝑋) → ⇝𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}))
3 simpr 110 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
43unieqd 3863 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
5 toponuni 14531 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65adantr 276 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑋 = 𝐽)
74, 6eqtr4d 2242 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝑋)
87oveq1d 5966 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ( 𝑗pm ℂ) = (𝑋pm ℂ))
98eleq2d 2276 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑓 ∈ ( 𝑗pm ℂ) ↔ 𝑓 ∈ (𝑋pm ℂ)))
107eleq2d 2276 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑥 𝑗𝑥𝑋))
113raleqdv 2709 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)))
129, 10, 113anbi123d 1325 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ((𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))))
1312opabbidv 4114 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
14 topontop 14530 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
15 df-3an 983 . . . . 5 ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)) ↔ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)))
1615opabbii 4115 . . . 4 {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}
17 opabssxp 4753 . . . 4 {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ ((𝑋pm ℂ) × 𝑋)
1816, 17eqsstri 3226 . . 3 {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ ((𝑋pm ℂ) × 𝑋)
19 fnpm 6750 . . . . 5 pm Fn (V × V)
20 toponmax 14541 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2120elexd 2786 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V)
22 cnex 8056 . . . . . 6 ℂ ∈ V
2322a1i 9 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → ℂ ∈ V)
24 fnovex 5984 . . . . 5 (( ↑pm Fn (V × V) ∧ 𝑋 ∈ V ∧ ℂ ∈ V) → (𝑋pm ℂ) ∈ V)
2519, 21, 23, 24mp3an2i 1355 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑋pm ℂ) ∈ V)
26 xpexg 4793 . . . 4 (((𝑋pm ℂ) ∈ V ∧ 𝑋𝐽) → ((𝑋pm ℂ) × 𝑋) ∈ V)
2725, 20, 26syl2anc 411 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝑋pm ℂ) × 𝑋) ∈ V)
28 ssexg 4187 . . 3 (({⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ ((𝑋pm ℂ) × 𝑋) ∧ ((𝑋pm ℂ) × 𝑋) ∈ V) → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ∈ V)
2918, 27, 28sylancr 414 . 2 (𝐽 ∈ (TopOn‘𝑋) → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ∈ V)
302, 13, 14, 29fvmptd 5667 1 (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  wss 3167   cuni 3852  {copab 4108  cmpt 4109   × cxp 4677  ran crn 4680  cres 4681   Fn wfn 5271  wf 5272  cfv 5276  (class class class)co 5951  pm cpm 6743  cc 7930  cuz 9655  Topctop 14513  TopOnctopon 14526  𝑡clm 14703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pm 6745  df-top 14514  df-topon 14527  df-lm 14706
This theorem is referenced by:  lmreltop  14709  lmbr  14729  sslm  14763
  Copyright terms: Public domain W3C validator