| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-lm 14426 | 
. . 3
⊢
⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | 
| 2 | 1 | a1i 9 | 
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) →
⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))})) | 
| 3 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽) | 
| 4 | 3 | unieqd 3850 | 
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ∪ 𝑗 = ∪
𝐽) | 
| 5 |   | toponuni 14251 | 
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 6 | 5 | adantr 276 | 
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → 𝑋 = ∪ 𝐽) | 
| 7 | 4, 6 | eqtr4d 2232 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) | 
| 8 | 7 | oveq1d 5937 | 
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∪ 𝑗 ↑pm
ℂ) = (𝑋
↑pm ℂ)) | 
| 9 | 8 | eleq2d 2266 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ↔ 𝑓 ∈
(𝑋
↑pm ℂ))) | 
| 10 | 7 | eleq2d 2266 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (𝑥 ∈ ∪ 𝑗 ↔ 𝑥 ∈ 𝑋)) | 
| 11 | 3 | raleqdv 2699 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → (∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢) ↔ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))) | 
| 12 | 9, 10, 11 | 3anbi123d 1323 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → ((𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)) ↔ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)))) | 
| 13 | 12 | opabbidv 4099 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑗 = 𝐽) → {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | 
| 14 |   | topontop 14250 | 
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 15 |   | df-3an 982 | 
. . . . 5
⊢ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)) ↔ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))) | 
| 16 | 15 | opabbii 4100 | 
. . . 4
⊢
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} | 
| 17 |   | opabssxp 4737 | 
. . . 4
⊢
{〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ⊆ ((𝑋 ↑pm ℂ) ×
𝑋) | 
| 18 | 16, 17 | eqsstri 3215 | 
. . 3
⊢
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ⊆ ((𝑋 ↑pm ℂ) ×
𝑋) | 
| 19 |   | fnpm 6715 | 
. . . . 5
⊢ 
↑pm Fn (V × V) | 
| 20 |   | toponmax 14261 | 
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 21 | 20 | elexd 2776 | 
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V) | 
| 22 |   | cnex 8003 | 
. . . . . 6
⊢ ℂ
∈ V | 
| 23 | 22 | a1i 9 | 
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → ℂ ∈
V) | 
| 24 |   | fnovex 5955 | 
. . . . 5
⊢ ((
↑pm Fn (V × V) ∧ 𝑋 ∈ V ∧ ℂ ∈ V) →
(𝑋
↑pm ℂ) ∈ V) | 
| 25 | 19, 21, 23, 24 | mp3an2i 1353 | 
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ↑pm ℂ) ∈
V) | 
| 26 |   | xpexg 4777 | 
. . . 4
⊢ (((𝑋 ↑pm
ℂ) ∈ V ∧ 𝑋
∈ 𝐽) → ((𝑋 ↑pm
ℂ) × 𝑋) ∈
V) | 
| 27 | 25, 20, 26 | syl2anc 411 | 
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝑋 ↑pm ℂ) ×
𝑋) ∈
V) | 
| 28 |   | ssexg 4172 | 
. . 3
⊢
(({〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ⊆ ((𝑋 ↑pm ℂ) ×
𝑋) ∧ ((𝑋 ↑pm
ℂ) × 𝑋) ∈
V) → {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ∈ V) | 
| 29 | 18, 27, 28 | sylancr 414 | 
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} ∈ V) | 
| 30 | 2, 13, 14, 29 | fvmptd 5642 | 
1
⊢ (𝐽 ∈ (TopOn‘𝑋) →
(⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |