HomeHome Intuitionistic Logic Explorer
Theorem List (p. 138 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13701-13800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-bdex 13701* A bounded existential quantification of a bounded formula is bounded. Note the disjoint variable condition on 𝑥, 𝑦. (Contributed by BJ, 25-Sep-2019.)
BOUNDED 𝜑       BOUNDED𝑥𝑦 𝜑
 
Axiomax-bdeq 13702 An atomic formula is bounded (equality predicate). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥 = 𝑦
 
Axiomax-bdel 13703 An atomic formula is bounded (membership predicate). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥𝑦
 
Axiomax-bdsb 13704 A formula resulting from proper substitution in a bounded formula is bounded. This probably cannot be proved from the other axioms, since neither the definiens in df-sb 1751, nor probably any other equivalent formula, is syntactically bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
 
Theorembdeq 13705 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
(𝜑𝜓)       (BOUNDED 𝜑BOUNDED 𝜓)
 
Theorembd0 13706 A formula equivalent to a bounded one is bounded. See also bd0r 13707. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   (𝜑𝜓)       BOUNDED 𝜓
 
Theorembd0r 13707 A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 13706) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   (𝜓𝜑)       BOUNDED 𝜓
 
Theorembdbi 13708 A biconditional between two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
 
Theorembdstab 13709 Stability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED STAB 𝜑
 
Theorembddc 13710 Decidability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED DECID 𝜑
 
Theorembd3or 13711 A disjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓    &   BOUNDED 𝜒       BOUNDED (𝜑𝜓𝜒)
 
Theorembd3an 13712 A conjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓    &   BOUNDED 𝜒       BOUNDED (𝜑𝜓𝜒)
 
Theorembdth 13713 A truth (a (closed) theorem) is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
𝜑       BOUNDED 𝜑
 
Theorembdtru 13714 The truth value is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED
 
Theorembdfal 13715 The truth value is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED
 
Theorembdnth 13716 A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
¬ 𝜑       BOUNDED 𝜑
 
TheorembdnthALT 13717 Alternate proof of bdnth 13716 not using bdfal 13715. Then, bdfal 13715 can be proved from this theorem, using fal 1350. The total number of proof steps would be 17 (for bdnthALT 13717) + 3 = 20, which is more than 8 (for bdfal 13715) + 9 (for bdnth 13716) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ 𝜑       BOUNDED 𝜑
 
Theorembdxor 13718 The exclusive disjunction of two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑    &   BOUNDED 𝜓       BOUNDED (𝜑𝜓)
 
Theorembj-bdcel 13719* Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.)
BOUNDED 𝑦 = 𝐴       BOUNDED 𝐴𝑥
 
Theorembdab 13720 Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝜑       BOUNDED 𝑥 ∈ {𝑦𝜑}
 
Theorembdcdeq 13721 Conditional equality of a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝜑       BOUNDED CondEq(𝑥 = 𝑦𝜑)
 
12.2.8.2  Bounded classes

In line with our definitions of classes as extensions of predicates, it is useful to define a predicate for bounded classes, which is done in df-bdc 13723. Note that this notion is only a technical device which can be used to shorten proofs of (semantic) boundedness of formulas.

As will be clear by the end of this subsection (see for instance bdop 13757), one can prove the boundedness of any concrete term using only setvars and bounded formulas, for instance, BOUNDED 𝜑 BOUNDED ⟨{𝑥𝜑}, ({𝑦, suc 𝑧} × ⟨𝑡, ∅⟩)⟩. The proofs are long since one has to prove boundedness at each step of the construction, without being able to prove general theorems like BOUNDED 𝐴BOUNDED {𝐴}.

 
Syntaxwbdc 13722 Syntax for the predicate BOUNDED.
wff BOUNDED 𝐴
 
Definitiondf-bdc 13723* Define a bounded class as one such that membership in this class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
(BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
 
Theorembdceq 13724 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
𝐴 = 𝐵       (BOUNDED 𝐴BOUNDED 𝐵)
 
Theorembdceqi 13725 A class equal to a bounded one is bounded. Note the use of ax-ext 2147. See also bdceqir 13726. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   𝐴 = 𝐵       BOUNDED 𝐵
 
Theorembdceqir 13726 A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 13725) equality in the hypothesis, to work better with definitions (𝐵 is the definiendum that one wants to prove bounded; see comment of bd0r 13707). (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   𝐵 = 𝐴       BOUNDED 𝐵
 
Theorembdel 13727* The belonging of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
(BOUNDED 𝐴BOUNDED 𝑥𝐴)
 
Theorembdeli 13728* Inference associated with bdel 13727. Its converse is bdelir 13729. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝐴
 
Theorembdelir 13729* Inference associated with df-bdc 13723. Its converse is bdeli 13728. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥𝐴       BOUNDED 𝐴
 
Theorembdcv 13730 A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝑥
 
Theorembdcab 13731 A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
BOUNDED 𝜑       BOUNDED {𝑥𝜑}
 
Theorembdph 13732 A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
BOUNDED {𝑥𝜑}       BOUNDED 𝜑
 
Theorembds 13733* Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 13704; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 13704. (Contributed by BJ, 19-Nov-2019.)
BOUNDED 𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       BOUNDED 𝜓
 
Theorembdcrab 13734* A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝜑       BOUNDED {𝑥𝐴𝜑}
 
Theorembdne 13735 Inequality of two setvars is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥𝑦
 
Theorembdnel 13736* Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝐴
 
Theorembdreu 13737* Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula 𝑥𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 13739, and (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 13706, if 𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then 𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.)

BOUNDED 𝜑       BOUNDED ∃!𝑥𝑦 𝜑
 
Theorembdrmo 13738* Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝜑       BOUNDED ∃*𝑥𝑦 𝜑
 
Theorembdcvv 13739 The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
BOUNDED V
 
Theorembdsbc 13740 A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 13741. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
 
TheorembdsbcALT 13741 Alternate proof of bdsbc 13740. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
BOUNDED 𝜑       BOUNDED [𝑦 / 𝑥]𝜑
 
Theorembdccsb 13742 A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑦 / 𝑥𝐴
 
Theorembdcdif 13743 The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝐵       BOUNDED (𝐴𝐵)
 
Theorembdcun 13744 The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝐵       BOUNDED (𝐴𝐵)
 
Theorembdcin 13745 The intersection of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴    &   BOUNDED 𝐵       BOUNDED (𝐴𝐵)
 
Theorembdss 13746 The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝐴
 
Theorembdcnul 13747 The empty class is bounded. See also bdcnulALT 13748. (Contributed by BJ, 3-Oct-2019.)
BOUNDED
 
TheorembdcnulALT 13748 Alternate proof of bdcnul 13747. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 13726, or use the corresponding characterizations of its elements followed by bdelir 13729. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
BOUNDED
 
Theorembdeq0 13749 Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
BOUNDED 𝑥 = ∅
 
Theorembj-bd0el 13750 Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.)
BOUNDED ∅ ∈ 𝑥
 
Theorembdcpw 13751 The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝒫 𝐴
 
Theorembdcsn 13752 The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥}
 
Theorembdcpr 13753 The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥, 𝑦}
 
Theorembdctp 13754 The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
BOUNDED {𝑥, 𝑦, 𝑧}
 
Theorembdsnss 13755* Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED {𝑥} ⊆ 𝐴
 
Theorembdvsn 13756* Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥 = {𝑦}
 
Theorembdop 13757 The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
BOUNDED𝑥, 𝑦
 
Theorembdcuni 13758 The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
BOUNDED 𝑥
 
Theorembdcint 13759 The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝑥
 
Theorembdciun 13760* The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝑦 𝐴
 
Theorembdciin 13761* The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED 𝐴       BOUNDED 𝑥𝑦 𝐴
 
Theorembdcsuc 13762 The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
BOUNDED suc 𝑥
 
Theorembdeqsuc 13763* Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
BOUNDED 𝑥 = suc 𝑦
 
Theorembj-bdsucel 13764 Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.)
BOUNDED suc 𝑥𝑦
 
Theorembdcriota 13765* A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
BOUNDED 𝜑    &   ∃!𝑥𝑦 𝜑       BOUNDED (𝑥𝑦 𝜑)
 
12.2.9  CZF: Bounded separation

In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory.

 
Axiomax-bdsep 13766* Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4100. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑎𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsep1 13767* Version of ax-bdsep 13766 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsep2 13768* Version of ax-bdsep 13766 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 13767 when sufficient. (Contributed by BJ, 5-Oct-2019.)
BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdsepnft 13769* Closed form of bdsepnf 13770. Version of ax-bdsep 13766 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 13767 when sufficient. (Contributed by BJ, 19-Oct-2019.)
BOUNDED 𝜑       (∀𝑥𝑏𝜑 → ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑)))
 
Theorembdsepnf 13770* Version of ax-bdsep 13766 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 13771. Use bdsep1 13767 when sufficient. (Contributed by BJ, 5-Oct-2019.)
𝑏𝜑    &   BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
TheorembdsepnfALT 13771* Alternate proof of bdsepnf 13770, not using bdsepnft 13769. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑏𝜑    &   BOUNDED 𝜑       𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
 
Theorembdzfauscl 13772* Closed form of the version of zfauscl 4102 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
BOUNDED 𝜑       (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
 
Theorembdbm1.3ii 13773* Bounded version of bm1.3ii 4103. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   𝑥𝑦(𝜑𝑦𝑥)       𝑥𝑦(𝑦𝑥𝜑)
 
Theorembj-axemptylem 13774* Lemma for bj-axempty 13775 and bj-axempty2 13776. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4108 instead. (New usage is discouraged.)
𝑥𝑦(𝑦𝑥 → ⊥)
 
Theorembj-axempty 13775* Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4107. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4108 instead. (New usage is discouraged.)
𝑥𝑦𝑥
 
Theorembj-axempty2 13776* Axiom of the empty set from bounded separation, alternate version to bj-axempty 13775. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4108 instead. (New usage is discouraged.)
𝑥𝑦 ¬ 𝑦𝑥
 
Theorembj-nalset 13777* nalset 4112 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ ∃𝑥𝑦 𝑦𝑥
 
Theorembj-vprc 13778 vprc 4114 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ V ∈ V
 
Theorembj-nvel 13779 nvel 4115 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ V ∈ 𝐴
 
Theorembj-vnex 13780 vnex 4113 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
¬ ∃𝑥 𝑥 = V
 
Theorembdinex1 13781 Bounded version of inex1 4116. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵    &   𝐴 ∈ V       (𝐴𝐵) ∈ V
 
Theorembdinex2 13782 Bounded version of inex2 4117. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵    &   𝐴 ∈ V       (𝐵𝐴) ∈ V
 
Theorembdinex1g 13783 Bounded version of inex1g 4118. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐵       (𝐴𝑉 → (𝐴𝐵) ∈ V)
 
Theorembdssex 13784 Bounded version of ssex 4119. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   𝐵 ∈ V       (𝐴𝐵𝐴 ∈ V)
 
Theorembdssexi 13785 Bounded version of ssexi 4120. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴    &   𝐵 ∈ V    &   𝐴𝐵       𝐴 ∈ V
 
Theorembdssexg 13786 Bounded version of ssexg 4121. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝐴       ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
 
Theorembdssexd 13787 Bounded version of ssexd 4122. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝜑𝐵𝐶)    &   (𝜑𝐴𝐵)    &   BOUNDED 𝐴       (𝜑𝐴 ∈ V)
 
Theorembdrabexg 13788* Bounded version of rabexg 4125. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
BOUNDED 𝜑    &   BOUNDED 𝐴       (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theorembj-inex 13789 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
Theorembj-intexr 13790 intexr 4129 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
( 𝐴 ∈ V → 𝐴 ≠ ∅)
 
Theorembj-intnexr 13791 intnexr 4130 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
( 𝐴 = V → ¬ 𝐴 ∈ V)
 
Theorembj-zfpair2 13792 Proof of zfpair2 4188 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
{𝑥, 𝑦} ∈ V
 
Theorembj-prexg 13793 Proof of prexg 4189 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
 
Theorembj-snexg 13794 snexg 4163 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → {𝐴} ∈ V)
 
Theorembj-snex 13795 snex 4164 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
𝐴 ∈ V       {𝐴} ∈ V
 
Theorembj-sels 13796* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
(𝐴𝑉 → ∃𝑥 𝐴𝑥)
 
Theorembj-axun2 13797* axun2 4413 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑥))
 
Theorembj-uniex2 13798* uniex2 4414 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
𝑦 𝑦 = 𝑥
 
Theorembj-uniex 13799 uniex 4415 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
𝐴 ∈ V        𝐴 ∈ V
 
Theorembj-uniexg 13800 uniexg 4417 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
(𝐴𝑉 𝐴 ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >