Theorem List for Intuitionistic Logic Explorer - 13701-13800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | opprvalg 13701 |
Value of the opposite ring. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos
·
〉)) |
| |
| Theorem | opprmulfvalg 13702 |
Value of the multiplication operation of an opposite ring. (Contributed
by Mario Carneiro, 1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ =
(.r‘𝑂) ⇒ ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos ·
) |
| |
| Theorem | opprmulg 13703 |
Value of the multiplication operation of an opposite ring. Hypotheses
eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed
by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro,
30-Aug-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ =
(.r‘𝑂) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) |
| |
| Theorem | crngoppr 13704 |
In a commutative ring, the opposite ring is equivalent to the original
ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ =
(.r‘𝑂) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∙ 𝑌)) |
| |
| Theorem | opprex 13705 |
Existence of the opposite ring. If you know that 𝑅 is a ring, see
opprring 13711. (Contributed by Jim Kingdon, 10-Jan-2025.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| |
| Theorem | opprsllem 13706 |
Lemma for opprbasg 13707 and oppraddg 13708. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠
(.r‘ndx) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) |
| |
| Theorem | opprbasg 13707 |
Base set of an opposite ring. (Contributed by Mario Carneiro,
1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑂)) |
| |
| Theorem | oppraddg 13708 |
Addition operation of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ + =
(+g‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → + =
(+g‘𝑂)) |
| |
| Theorem | opprrng 13709 |
An opposite non-unital ring is a non-unital ring. (Contributed by AV,
15-Feb-2025.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
| |
| Theorem | opprrngbg 13710 |
A set is a non-unital ring if and only if its opposite is a non-unital
ring. Bidirectional form of opprrng 13709. (Contributed by AV,
15-Feb-2025.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |
| |
| Theorem | opprring 13711 |
An opposite ring is a ring. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| |
| Theorem | opprringbg 13712 |
Bidirectional form of opprring 13711. (Contributed by Mario Carneiro,
6-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)) |
| |
| Theorem | oppr0g 13713 |
Additive identity of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 0 =
(0g‘𝑂)) |
| |
| Theorem | oppr1g 13714 |
Multiplicative identity of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 1 =
(1r‘𝑂)) |
| |
| Theorem | opprnegg 13715 |
The negative function in an opposite ring. (Contributed by Mario
Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑁 = (invg‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) |
| |
| Theorem | opprsubgg 13716 |
Being a subgroup is a symmetric property. (Contributed by Mario
Carneiro, 6-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
| |
| Theorem | mulgass3 13717 |
An associative property between group multiple and ring multiplication.
(Contributed by Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.g‘𝑅)
& ⊢ × =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
| |
| 7.3.7 Divisibility
|
| |
| Syntax | cdsr 13718 |
Ring divisibility relation.
|
| class ∥r |
| |
| Syntax | cui 13719 |
Units in a ring.
|
| class Unit |
| |
| Syntax | cir 13720 |
Ring irreducibles.
|
| class Irred |
| |
| Definition | df-dvdsr 13721* |
Define the (right) divisibility relation in a ring. Access to the left
divisibility relation is available through
(∥r‘(oppr‘𝑅)). (Contributed by
Mario Carneiro,
1-Dec-2014.)
|
| ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
| |
| Definition | df-unit 13722 |
Define the set of units in a ring, that is, all elements with a left and
right multiplicative inverse. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |
| |
| Definition | df-irred 13723* |
Define the set of irreducible elements in a ring. (Contributed by Mario
Carneiro, 4-Dec-2014.)
|
| ⊢ Irred = (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
| |
| Theorem | reldvdsrsrg 13724 |
The divides relation is a relation. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
|
| ⊢ (𝑅 ∈ SRing → Rel
(∥r‘𝑅)) |
| |
| Theorem | dvdsrvald 13725* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) ⇒ ⊢ (𝜑 → ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}) |
| |
| Theorem | dvdsrd 13726* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
| |
| Theorem | dvdsr2d 13727* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| |
| Theorem | dvdsrmuld 13728 |
A left-multiple of 𝑋 is divisible by 𝑋.
(Contributed by
Mario Carneiro, 1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| |
| Theorem | dvdsrcld 13729 |
Closure of a dividing element. (Contributed by Mario Carneiro,
5-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| |
| Theorem | dvdsrex 13730 |
Existence of the divisibility relation. (Contributed by Jim Kingdon,
28-Jan-2025.)
|
| ⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) ∈ V) |
| |
| Theorem | dvdsrcl2 13731 |
Closure of a dividing element. (Contributed by Mario Carneiro,
5-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∥ 𝑌) → 𝑌 ∈ 𝐵) |
| |
| Theorem | dvdsrid 13732 |
An element in a (unital) ring divides itself. (Contributed by Mario
Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 𝑋) |
| |
| Theorem | dvdsrtr 13733 |
Divisibility is transitive. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) |
| |
| Theorem | dvdsrmul1 13734 |
The divisibility relation is preserved under right-multiplication.
(Contributed by Mario Carneiro, 1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| |
| Theorem | dvdsrneg 13735 |
An element divides its negative. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ (𝑁‘𝑋)) |
| |
| Theorem | dvdsr01 13736 |
In a ring, zero is divisible by all elements. ("Zero divisor" as a
term
has a somewhat different meaning.) (Contributed by Stefan O'Rear,
29-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) |
| |
| Theorem | dvdsr02 13737 |
Only zero is divisible by zero. (Contributed by Stefan O'Rear,
29-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) |
| |
| Theorem | isunitd 13738 |
Property of being a unit of a ring. A unit is an element that left-
and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.)
(Revised by Mario Carneiro, 8-Dec-2015.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 1 =
(1r‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑆 = (oppr‘𝑅)) & ⊢ (𝜑 → 𝐸 = (∥r‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ SRing)
⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 ))) |
| |
| Theorem | 1unit 13739 |
The multiplicative identity is a unit. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
| |
| Theorem | unitcld 13740 |
A unit is an element of the base set. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| |
| Theorem | unitssd 13741 |
The set of units is contained in the base set. (Contributed by Mario
Carneiro, 5-Oct-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing)
⇒ ⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| |
| Theorem | opprunitd 13742 |
Being a unit is a symmetric property, so it transfers to the opposite
ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑆 = (oppr‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → 𝑈 = (Unit‘𝑆)) |
| |
| Theorem | crngunit 13743 |
Property of being a unit in a commutative ring. (Contributed by Mario
Carneiro, 18-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
| |
| Theorem | dvdsunit 13744 |
A divisor of a unit is a unit. (Contributed by Mario Carneiro,
18-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
| |
| Theorem | unitmulcl 13745 |
The product of units is a unit. (Contributed by Mario Carneiro,
2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) |
| |
| Theorem | unitmulclb 13746 |
Reversal of unitmulcl 13745 in a commutative ring. (Contributed by
Mario
Carneiro, 18-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
| |
| Theorem | unitgrpbasd 13747 |
The base set of the group of units. (Contributed by Mario Carneiro,
25-Dec-2014.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) & ⊢ (𝜑 → 𝑅 ∈ SRing)
⇒ ⊢ (𝜑 → 𝑈 = (Base‘𝐺)) |
| |
| Theorem | unitgrp 13748 |
The group of units is a group under multiplication. (Contributed by
Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| |
| Theorem | unitabl 13749 |
The group of units of a commutative ring is abelian. (Contributed by
Mario Carneiro, 19-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) |
| |
| Theorem | unitgrpid 13750 |
The identity of the group of units of a ring is the ring unity.
(Contributed by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 =
(0g‘𝐺)) |
| |
| Theorem | unitsubm 13751 |
The group of units is a submonoid of the multiplicative monoid of the
ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| |
| Syntax | cinvr 13752 |
Extend class notation with multiplicative inverse.
|
| class invr |
| |
| Definition | df-invr 13753 |
Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
|
| ⊢ invr = (𝑟 ∈ V ↦
(invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) |
| |
| Theorem | invrfvald 13754 |
Multiplicative inverse function for a ring. (Contributed by NM,
21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) & ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| |
| Theorem | unitinvcl 13755 |
The inverse of a unit exists and is a unit. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
| |
| Theorem | unitinvinv 13756 |
The inverse of the inverse of a unit is the same element. (Contributed
by Mario Carneiro, 4-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
| |
| Theorem | ringinvcl 13757 |
The inverse of a unit is an element of the ring. (Contributed by
Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝐵) |
| |
| Theorem | unitlinv 13758 |
A unit times its inverse is the ring unity. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
| |
| Theorem | unitrinv 13759 |
A unit times its inverse is the ring unity. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) |
| |
| Theorem | 1rinv 13760 |
The inverse of the ring unity is the ring unity. (Contributed by Mario
Carneiro, 18-Jun-2015.)
|
| ⊢ 𝐼 = (invr‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼‘ 1 ) = 1 ) |
| |
| Theorem | 0unit 13761 |
The additive identity is a unit if and only if 1 = 0,
i.e. we are
in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) |
| |
| Theorem | unitnegcl 13762 |
The negative of a unit is a unit. (Contributed by Mario Carneiro,
4-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
| |
| Syntax | cdvr 13763 |
Extend class notation with ring division.
|
| class /r |
| |
| Definition | df-dvr 13764* |
Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.)
|
| ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) |
| |
| Theorem | dvrfvald 13765* |
Division operation in a ring. (Contributed by Mario Carneiro,
2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened
by AV, 2-Mar-2024.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) & ⊢ (𝜑 → / =
(/r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing)
⇒ ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| |
| Theorem | dvrvald 13766 |
Division operation in a ring. (Contributed by Mario Carneiro,
2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) & ⊢ (𝜑 → / =
(/r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
| |
| Theorem | dvrcl 13767 |
Closure of division operation. (Contributed by Mario Carneiro,
2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝐵) |
| |
| Theorem | unitdvcl 13768 |
The units are closed under division. (Contributed by Mario Carneiro,
2-Jul-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) |
| |
| Theorem | dvrid 13769 |
A ring element divided by itself is the ring unity. (dividap 8745
analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 / 𝑋) = 1 ) |
| |
| Theorem | dvr1 13770 |
A ring element divided by the ring unity is itself. (div1 8747
analog.)
(Contributed by Mario Carneiro, 18-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) |
| |
| Theorem | dvrass 13771 |
An associative law for division. (divassap 8734 analog.) (Contributed by
Mario Carneiro, 4-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) |
| |
| Theorem | dvrcan1 13772 |
A cancellation law for division. (divcanap1 8725 analog.) (Contributed
by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro,
2-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
| |
| Theorem | dvrcan3 13773 |
A cancellation law for division. (divcanap3 8742 analog.) (Contributed
by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro,
18-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) |
| |
| Theorem | dvreq1 13774 |
Equality in terms of ratio equal to ring unity. (diveqap1 8749 analog.)
(Contributed by Mario Carneiro, 28-Apr-2016.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) |
| |
| Theorem | dvrdir 13775 |
Distributive law for the division operation of a ring. (Contributed by
Thierry Arnoux, 30-Oct-2017.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ / =
(/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
| |
| Theorem | rdivmuldivd 13776 |
Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18.
(Contributed by Thierry Arnoux, 30-Oct-2017.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ + =
(+g‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝑈)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵)
& ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) |
| |
| Theorem | ringinvdv 13777 |
Write the inverse function in terms of division. (Contributed by Mario
Carneiro, 2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ / =
(/r‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) = ( 1 / 𝑋)) |
| |
| Theorem | rngidpropdg 13778* |
The ring unity depends only on the ring's base set and multiplication
operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐾 ∈ 𝑉)
& ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| |
| Theorem | dvdsrpropdg 13779* |
The divisibility relation depends only on the ring's base set and
multiplication operation. (Contributed by Mario Carneiro,
26-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐾 ∈ SRing) & ⊢ (𝜑 → 𝐿 ∈ SRing)
⇒ ⊢ (𝜑 → (∥r‘𝐾) =
(∥r‘𝐿)) |
| |
| Theorem | unitpropdg 13780* |
The set of units depends only on the ring's base set and multiplication
operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐾 ∈ Ring) & ⊢ (𝜑 → 𝐿 ∈ Ring)
⇒ ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| |
| Theorem | invrpropdg 13781* |
The ring inverse function depends only on the ring's base set and
multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(Revised by Mario Carneiro, 5-Oct-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))
& ⊢ (𝜑 → 𝐾 ∈ Ring) & ⊢ (𝜑 → 𝐿 ∈ Ring)
⇒ ⊢ (𝜑 → (invr‘𝐾) =
(invr‘𝐿)) |
| |
| 7.3.8 Ring homomorphisms
|
| |
| Syntax | crh 13782 |
Extend class notation with the ring homomorphisms.
|
| class RingHom |
| |
| Syntax | crs 13783 |
Extend class notation with the ring isomorphisms.
|
| class RingIso |
| |
| Definition | df-rhm 13784* |
Define the set of ring homomorphisms from 𝑟 to 𝑠. (Contributed
by Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑𝑚 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
| |
| Definition | df-rim 13785* |
Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed
by Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) |
| |
| Theorem | dfrhm2 13786* |
The property of a ring homomorphism can be decomposed into separate
homomorphic conditions for addition and multiplication. (Contributed by
Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) |
| |
| Theorem | rhmrcl1 13787 |
Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear,
7-Mar-2015.)
|
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
| |
| Theorem | rhmrcl2 13788 |
Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear,
7-Mar-2015.)
|
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
| |
| Theorem | rhmex 13789 |
Set existence for ring homomorphism. (Contributed by Jim Kingdon,
16-May-2025.)
|
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 RingHom 𝑆) ∈ V) |
| |
| Theorem | isrhm 13790 |
A function is a ring homomorphism iff it preserves both addition and
multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅)
& ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) |
| |
| Theorem | rhmmhm 13791 |
A ring homomorphism is a homomorphism of multiplicative monoids.
(Contributed by Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ 𝑀 = (mulGrp‘𝑅)
& ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁)) |
| |
| Theorem | rimrcl 13792 |
Reverse closure for an isomorphism of rings. (Contributed by AV,
22-Oct-2019.)
|
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| |
| Theorem | isrim0 13793 |
A ring isomorphism is a homomorphism whose converse is also a
homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood
antecedent. (Revised by SN, 10-Jan-2025.)
|
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
| |
| Theorem | rhmghm 13794 |
A ring homomorphism is an additive group homomorphism. (Contributed by
Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| |
| Theorem | rhmf 13795 |
A ring homomorphism is a function. (Contributed by Stefan O'Rear,
8-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| |
| Theorem | rhmmul 13796 |
A homomorphism of rings preserves multiplication. (Contributed by Mario
Carneiro, 12-Jun-2015.)
|
| ⊢ 𝑋 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ × =
(.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| |
| Theorem | isrhm2d 13797* |
Demonstration of ring homomorphism. (Contributed by Mario Carneiro,
13-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 𝑁 = (1r‘𝑆)
& ⊢ · =
(.r‘𝑅)
& ⊢ × =
(.r‘𝑆)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| |
| Theorem | isrhmd 13798* |
Demonstration of ring homomorphism. (Contributed by Stefan O'Rear,
8-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 𝑁 = (1r‘𝑆)
& ⊢ · =
(.r‘𝑅)
& ⊢ × =
(.r‘𝑆)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + =
(+g‘𝑅)
& ⊢ ⨣ =
(+g‘𝑆)
& ⊢ (𝜑 → 𝐹:𝐵⟶𝐶)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| |
| Theorem | rhm1 13799 |
Ring homomorphisms are required to fix 1. (Contributed by Stefan
O'Rear, 8-Mar-2015.)
|
| ⊢ 1 =
(1r‘𝑅)
& ⊢ 𝑁 = (1r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) |
| |
| Theorem | rhmf1o 13800 |
A ring homomorphism is bijective iff its converse is also a ring
homomorphism. (Contributed by AV, 22-Oct-2019.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |