HomeHome Intuitionistic Logic Explorer
Theorem List (p. 138 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13701-13800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremablnncan 13701 Cancellation law for group subtraction. (nncan 8308 analog.) (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 (𝑋 𝑌)) = 𝑌)
 
Theoremablsub32 13702 Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑍) 𝑌))
 
Theoremablnnncan 13703 Cancellation law for group subtraction. (nnncan 8314 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))
 
Theoremablnnncan1 13704 Cancellation law for group subtraction. (nnncan1 8315 analog.) (Contributed by NM, 7-Apr-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Abel)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
 
Theoremablsubsub23 13705 Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
𝑉 = (Base‘𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Abel ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) = 𝐶 ↔ (𝐴 𝐶) = 𝐵))
 
Theoremghmfghm 13706* The function fulfilling the conditions of ghmgrp 13498 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Grp)       (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
 
Theoremghmcmn 13707* The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ CMnd)       (𝜑𝐻 ∈ CMnd)
 
Theoremghmabl 13708* The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
𝑋 = (Base‘𝐺)    &   𝑌 = (Base‘𝐻)    &    + = (+g𝐺)    &    = (+g𝐻)    &   ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑𝐹:𝑋onto𝑌)    &   (𝜑𝐺 ∈ Abel)       (𝜑𝐻 ∈ Abel)
 
Theoreminvghm 13709 The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝐺)    &   𝐼 = (invg𝐺)       (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
 
Theoremeqgabl 13710 Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &    = (-g𝐺)    &    = (𝐺 ~QG 𝑆)       ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
 
Theoremqusecsub 13711 Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &    = (𝐺 ~QG 𝑆)       (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] = [𝑌] ↔ (𝑌 𝑋) ∈ 𝑆))
 
Theoremsubgabl 13712 A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
𝐻 = (𝐺s 𝑆)       ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
 
Theoremsubcmnd 13713 A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
(𝜑𝐻 = (𝐺s 𝑆))    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑆𝑉)       (𝜑𝐻 ∈ CMnd)
 
Theoremablnsg 13714 Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
 
Theoremablressid 13715 A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12947. (Contributed by Jim Kingdon, 5-May-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)
 
Theoremimasabl 13716* The image structure of an abelian group is an abelian group (imasgrp 13491 analog). (Contributed by AV, 22-Feb-2025.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅 ∈ Abel)    &    0 = (0g𝑅)       (𝜑 → (𝑈 ∈ Abel ∧ (𝐹0 ) = (0g𝑈)))
 
7.2.5.2  Group sum operation
 
Theoremgsumfzreidx 13717 Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with 𝑀 = 1. (Contributed by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)    &   (𝜑𝐻:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))       (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹𝐻)))
 
Theoremgsumfzsubmcl 13718 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
(𝜑𝐺 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝑆)       (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)
 
Theoremgsumfzmptfidmadd 13719* The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)    &   𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)    &   𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)       (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
 
Theoremgsumfzmptfidmadd2 13720* The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)    &   𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)    &   𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)       (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
 
Theoremgsumfzconst 13721* Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
 
Theoremgsumfzconstf 13722* Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.)
𝑘𝑋    &   𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
 
Theoremgsumfzmhm 13723 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
 
Theoremgsumfzmhm2 13724* Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐻 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑋𝐵)    &   (𝑥 = 𝑋𝐶 = 𝐷)    &   (𝑥 = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) → 𝐶 = 𝐸)       (𝜑 → (𝐻 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐷)) = 𝐸)
 
Theoremgsumfzsnfd 13725* Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)    &   𝑘𝜑    &   𝑘𝐶       (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
 
7.3  Rings
 
7.3.1  Multiplicative Group
 
Syntaxcmgp 13726 Multiplicative group.
class mulGrp
 
Definitiondf-mgp 13727 Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" or "the multiplicative identity" in terms of the identity of a monoid (df-ur 13766). (Contributed by Mario Carneiro, 21-Dec-2014.)
mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
 
Theoremfnmgp 13728 The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
mulGrp Fn V
 
Theoremmgpvalg 13729 Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)       (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), · ⟩))
 
Theoremmgpplusgg 13730 Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
𝑀 = (mulGrp‘𝑅)    &    · = (.r𝑅)       (𝑅𝑉· = (+g𝑀))
 
Theoremmgpex 13731 Existence of the multiplication group. If 𝑅 is known to be a semiring, see srgmgp 13774. (Contributed by Jim Kingdon, 10-Jan-2025.)
𝑀 = (mulGrp‘𝑅)       (𝑅𝑉𝑀 ∈ V)
 
Theoremmgpbasg 13732 Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅𝑉𝐵 = (Base‘𝑀))
 
Theoremmgpscag 13733 The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑆 = (Scalar‘𝑅)       (𝑅𝑉𝑆 = (Scalar‘𝑀))
 
Theoremmgptsetg 13734 Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)       (𝑅𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀))
 
Theoremmgptopng 13735 Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐽 = (TopOpen‘𝑅)       (𝑅𝑉𝐽 = (TopOpen‘𝑀))
 
Theoremmgpdsg 13736 Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (dist‘𝑅)       (𝑅𝑉𝐵 = (dist‘𝑀))
 
Theoremmgpress 13737 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
𝑆 = (𝑅s 𝐴)    &   𝑀 = (mulGrp‘𝑅)       ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
 
7.3.2  Non-unital rings ("rngs")

According to Wikipedia, "... in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 28-Mar-2025).

 
Syntaxcrng 13738 Extend class notation with class of all non-unital rings.
class Rng
 
Definitiondf-rng 13739* Define the class of all non-unital rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.)
Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
 
Theoremisrng 13740* The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
 
Theoremrngabl 13741 A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
(𝑅 ∈ Rng → 𝑅 ∈ Abel)
 
Theoremrngmgp 13742 A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ Rng → 𝐺 ∈ Smgrp)
 
Theoremrngmgpf 13743 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13817 analog). (Contributed by AV, 22-Feb-2025.)
(mulGrp ↾ Rng):Rng⟶Smgrp
 
Theoremrnggrp 13744 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
(𝑅 ∈ Rng → 𝑅 ∈ Grp)
 
Theoremrngass 13745 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremrngdi 13746 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
 
Theoremrngdir 13747 Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
 
Theoremrngacl 13748 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremrng0cl 13749 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Rng → 0𝐵)
 
Theoremrngcl 13750 Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremrnglz 13751 The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13849. (Revised by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremrngrz 13752 The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13850. (Revised by AV, 16-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremrngmneg1 13753 Negation of a product in a non-unital ring (mulneg1 8474 analog). In contrast to ringmneg1 13859, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremrngmneg2 13754 Negation of a product in a non-unital ring (mulneg2 8475 analog). In contrast to ringmneg2 13860, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremrngm2neg 13755 Double negation of a product in a non-unital ring (mul2neg 8477 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13861. (Revised by AV, 17-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = (𝑋 · 𝑌))
 
Theoremrngansg 13756 Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
(𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
 
Theoremrngsubdi 13757 Ring multiplication distributes over subtraction. (subdi 8464 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13862. (Revised by AV, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
 
Theoremrngsubdir 13758 Ring multiplication distributes over subtraction. (subdir 8465 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13863. (Revised by AV, 23-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Rng)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
 
Theoremisrngd 13759* Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Abel)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))       (𝜑𝑅 ∈ Rng)
 
Theoremrngressid 13760 A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12947. (Contributed by Jim Kingdon, 5-May-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)
 
Theoremrngpropd 13761* If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
 
Theoremimasrng 13762* The image structure of a non-unital ring is a non-unital ring (imasring 13870 analog). (Contributed by AV, 22-Feb-2025.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑𝑅 ∈ Rng)       (𝜑𝑈 ∈ Rng)
 
Theoremimasrngf1 13763 The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Rng) → 𝑈 ∈ Rng)
 
Theoremqusrng 13764* The quotient structure of a non-unital ring is a non-unital ring (qusring2 13872 analog). (Contributed by AV, 23-Feb-2025.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &   (𝜑 Er 𝑉)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   (𝜑𝑅 ∈ Rng)       (𝜑𝑈 ∈ Rng)
 
7.3.3  Ring unity (multiplicative identity)

In Wikipedia "Identity element", see https://en.wikipedia.org/wiki/Identity_element (18-Jan-2025): "... an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). ... The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit."

Calling the multiplicative identity of a ring a unity is taken from the definition of a ring with unity in section 17.3 of [BeauregardFraleigh] p. 135, "A ring ( R , + , . ) is a ring with unity if R is not the zero ring and ( R , . ) is a monoid. In this case, the identity element of ( R , . ) is denoted by 1 and is called the unity of R." This definition of a "ring with unity" corresponds to our definition of a unital ring (see df-ring 13804).

Some authors call the multiplicative identity "unit" or "unit element" (for example in section I, 2.2 of [BourbakiAlg1] p. 14, definition in section 1.3 of [Hall] p. 4, or in section I, 1 of [Lang] p. 3), whereas other authors use the term "unit" for an element having a multiplicative inverse (for example in section 17.3 of [BeauregardFraleigh] p. 135, in definition in [Roman] p. 26, or even in section II, 1 of [Lang] p. 84). Sometimes, the multiplicative identity is simply called "one" (see, for example, chapter 8 in [Schechter] p. 180).

To avoid this ambiguity of the term "unit", also mentioned in Wikipedia, we call the multiplicative identity of a structure with a multiplication (usually a ring) a "ring unity", or straightly "multiplicative identity".

The term "unit" will be used for an element having a multiplicative inverse (see https://us.metamath.org/mpeuni/df-unit.html 13804 in set.mm), and we have "the ring unity is a unit", see https://us.metamath.org/mpeuni/1unit.html 13804.

 
Syntaxcur 13765 Extend class notation with ring unity.
class 1r
 
Definitiondf-ur 13766 Define the multiplicative identity, i.e., the monoid identity (df-0g 13134) of the multiplicative monoid (df-mgp 13727) of a ring-like structure. This multiplicative identity is also called "ring unity" or "unity element".

This definition works by transferring the multiplicative operation from the .r slot to the +g slot and then looking at the element which is then the 0g element, that is an identity with respect to the operation which started out in the .r slot.

See also dfur2g 13768, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)

1r = (0g ∘ mulGrp)
 
Theoremringidvalg 13767 The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐺 = (mulGrp‘𝑅)    &    1 = (1r𝑅)       (𝑅𝑉1 = (0g𝐺))
 
Theoremdfur2g 13768* The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       (𝑅𝑉1 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))))
 
7.3.4  Semirings
 
Syntaxcsrg 13769 Extend class notation with the class of all semirings.
class SRing
 
Definitiondf-srg 13770* Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡][(0g𝑓) / 𝑛]𝑥𝑟 (∀𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
 
Theoremissrg 13771* The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))
 
Theoremsrgcmn 13772 A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing → 𝑅 ∈ CMnd)
 
Theoremsrgmnd 13773 A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing → 𝑅 ∈ Mnd)
 
Theoremsrgmgp 13774 A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
 
Theoremsrgdilem 13775 Lemma for srgdi 13780 and srgdir 13781. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
 
Theoremsrgcl 13776 Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremsrgass 13777 Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremsrgideu 13778* The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
 
Theoremsrgfcl 13779 Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)
 
Theoremsrgdi 13780 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
 
Theoremsrgdir 13781 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
 
Theoremsrgidcl 13782 The unity element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ SRing → 1𝐵)
 
Theoremsrg0cl 13783 The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ SRing → 0𝐵)
 
Theoremsrgidmlem 13784 Lemma for srglidm 13785 and srgridm 13786. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
 
Theoremsrglidm 13785 The unity element of a semiring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
 
Theoremsrgridm 13786 The unity element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
 
Theoremissrgid 13787* Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
 
Theoremsrgacl 13788 Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremsrgcom 13789 Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremsrgrz 13790 The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremsrglz 13791 The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremsrgisid 13792* In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝑍𝐵)    &   ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)       (𝜑𝑍 = 0 )
 
Theoremsrg1zr 13793 The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)       (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremsrgen1zr 13794 The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)    &   𝑍 = (0g𝑅)       ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremsrgmulgass 13795 An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑁 ∈ ℕ0𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
 
Theoremsrgpcomp 13796 If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))       (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
 
Theoremsrgpcompp 13797 If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
 
Theoremsrgpcomppsc 13798 If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)    &    · = (.g𝑅)    &   (𝜑𝐶 ∈ ℕ0)       (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
 
Theoremsrglmhm 13799* Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
 
Theoremsrgrmhm 13800* Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >