Home | Intuitionistic Logic Explorer Theorem List (p. 138 of 142) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||||
Theorem | lgsfcl2 13701* | The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 13694). (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) | ||||||||||||||||||||||||||
Theorem | lgscllem 13702* | The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) & ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||||||||||||||||||||||||||
Theorem | lgsfcl 13703* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||||||||||||||||||||||||||
Theorem | lgsfle1 13704* | The function 𝐹 has magnitude less or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (abs‘(𝐹‘𝑀)) ≤ 1) | ||||||||||||||||||||||||||
Theorem | lgsval2lem 13705* | Lemma for lgsval2 13711. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℙ) → (𝐴 /L 𝑁) = if(𝑁 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑁 − 1) / 2)) + 1) mod 𝑁) − 1))) | ||||||||||||||||||||||||||
Theorem | lgsval4lem 13706* | Lemma for lgsval4 13715. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) | ||||||||||||||||||||||||||
Theorem | lgscl2 13707* | The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | ||||||||||||||||||||||||||
Theorem | lgs0 13708 | The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) | ||||||||||||||||||||||||||
Theorem | lgscl 13709 | The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | ||||||||||||||||||||||||||
Theorem | lgsle1 13710 | The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 13709 this implies that it takes values in {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴 /L 𝑁)) ≤ 1) | ||||||||||||||||||||||||||
Theorem | lgsval2 13711 | The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2). (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 /L 𝑃) = if(𝑃 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1))) | ||||||||||||||||||||||||||
Theorem | lgs2 13712 | The Legendre symbol at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))) | ||||||||||||||||||||||||||
Theorem | lgsval3 13713 | The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑃) = ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1)) | ||||||||||||||||||||||||||
Theorem | lgsvalmod 13714 | The Legendre symbol is equivalent to 𝑎↑((𝑝 − 1) / 2), mod 𝑝. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | ||||||||||||||||||||||||||
Theorem | lgsval4 13715* | Restate lgsval 13699 for nonzero 𝑁, where the function 𝐹 has been abbreviated into a self-referential expression taking the value of /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) | ||||||||||||||||||||||||||
Theorem | lgsfcl3 13716* | Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) | ||||||||||||||||||||||||||
Theorem | lgsval4a 13717* | Same as lgsval4 13715 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) | ||||||||||||||||||||||||||
Theorem | lgscl1 13718 | The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ {-1, 0, 1}) | ||||||||||||||||||||||||||
Theorem | lgsneg 13719 | The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) | ||||||||||||||||||||||||||
Theorem | lgsneg1 13720 | The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) | ||||||||||||||||||||||||||
Theorem | lgsmod 13721 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁)) | ||||||||||||||||||||||||||
Theorem | lgsdilem 13722 | Lemma for lgsdi 13732 and lgsdir 13730: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1))) | ||||||||||||||||||||||||||
Theorem | lgsdir2lem1 13723 | Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (((1 mod 8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) = 5)) | ||||||||||||||||||||||||||
Theorem | lgsdir2lem2 13724 | Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))) & ⊢ 𝑀 = (𝐾 + 1) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑁 ∈ 𝑆 ⇒ ⊢ (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))) | ||||||||||||||||||||||||||
Theorem | lgsdir2lem3 13725 | Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5})) | ||||||||||||||||||||||||||
Theorem | lgsdir2lem4 13726 | Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7})) | ||||||||||||||||||||||||||
Theorem | lgsdir2lem5 13727 | Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7}) | ||||||||||||||||||||||||||
Theorem | lgsdir2 13728 | The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2))) | ||||||||||||||||||||||||||
Theorem | lgsdirprm 13729 | The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) | ||||||||||||||||||||||||||
Theorem | lgsdir 13730 | The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||||||||||||||||||||||||||
Theorem | lgsdilem2 13731* | Lemma for lgsdi 13732. (Contributed by Mario Carneiro, 4-Feb-2015.) | ||||||||||||||||||||||||
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝑁 ≠ 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1)) ⇒ ⊢ (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁)))) | ||||||||||||||||||||||||||
Theorem | lgsdi 13732 | The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that 𝑀 and 𝑁 are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.) | ||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||||||||||||||||||||||||||
Theorem | lgsne0 13733 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 /L 𝑁) ≠ 0 ↔ (𝐴 gcd 𝑁) = 1)) | ||||||||||||||||||||||||||
Theorem | lgsabs1 13734 | The Legendre symbol is nonzero (and hence equal to 1 or -1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐴 /L 𝑁)) = 1 ↔ (𝐴 gcd 𝑁) = 1)) | ||||||||||||||||||||||||||
Theorem | lgssq 13735 | The Legendre symbol at a square is equal to 1. Together with lgsmod 13721 this implies that the Legendre symbol takes value 1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.) | ||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1) | ||||||||||||||||||||||||||
Theorem | lgssq2 13736 | The Legendre symbol at a square is equal to 1. (Contributed by Mario Carneiro, 5-Feb-2015.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 /L (𝑁↑2)) = 1) | ||||||||||||||||||||||||||
Theorem | lgsprme0 13737 | The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) | ||||||||||||||||||||||||||
Theorem | 1lgs 13738 | The Legendre symbol at 1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
⊢ (𝑁 ∈ ℤ → (1 /L 𝑁) = 1) | ||||||||||||||||||||||||||
Theorem | lgs1 13739 | The Legendre symbol at 1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
⊢ (𝐴 ∈ ℤ → (𝐴 /L 1) = 1) | ||||||||||||||||||||||||||
Theorem | lgsmodeq 13740 | The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → (𝐴 /L 𝑁) = (𝐵 /L 𝑁))) | ||||||||||||||||||||||||||
Theorem | lgsmulsqcoprm 13741 | The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||
⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁)) | ||||||||||||||||||||||||||
Theorem | lgsdirnn0 13742 | Variation on lgsdir 13730 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁))) | ||||||||||||||||||||||||||
Theorem | lgsdinn0 13743 | Variation on lgsdi 13732 valid for all 𝑀, 𝑁 but only for positive 𝐴. (The exact location of the failure of this law is for 𝐴 = -1, 𝑀 = 0, and some 𝑁 in which case (-1 /L 0) = 1 but (-1 /L 𝑁) = -1 when -1 is not a quadratic residue mod 𝑁.) (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L (𝑀 · 𝑁)) = ((𝐴 /L 𝑀) · (𝐴 /L 𝑁))) | ||||||||||||||||||||||||||
Theorem | 2sqlem1 13744* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | ||||||||||||||||||||||||||
Theorem | 2sqlem2 13745* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | ||||||||||||||||||||||||||
Theorem | mul2sq 13746 | Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) | ||||||||||||||||||||||||||
Theorem | 2sqlem3 13747 | Lemma for 2sqlem5 13749. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) & ⊢ (𝜑 → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||
Theorem | 2sqlem4 13748 | Lemma for 2sqlem5 13749. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||
Theorem | 2sqlem5 13749 | Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝑁 · 𝑃) ∈ 𝑆) & ⊢ (𝜑 → 𝑃 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||||||||||||||||||||||||||
Theorem | 2sqlem6 13750* | Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐵 → 𝑝 ∈ 𝑆)) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑆) | ||||||||||||||||||||||||||
Theorem | 2sqlem7 13751* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ 𝑌 ⊆ (𝑆 ∩ ℕ) | ||||||||||||||||||||||||||
Theorem | 2sqlem8a 13752* | Lemma for 2sqlem8 13753. (Contributed by Mario Carneiro, 4-Jun-2016.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) | ||||||||||||||||||||||||||
Theorem | 2sqlem8 13753* | Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐸 = (𝐶 / (𝐶 gcd 𝐷)) & ⊢ 𝐹 = (𝐷 / (𝐶 gcd 𝐷)) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||||||||||||||||||||||||||
Theorem | 2sqlem9 13754* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||||||||||||||||||||||||||
Theorem | 2sqlem10 13755* | Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → 𝐵 ∈ 𝑆) | ||||||||||||||||||||||||||
This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following:
| ||||||||||||||||||||||||||
Theorem | conventions 13756 |
Unless there is a reason to diverge, we follow the conventions of the
Metamath Proof Explorer (MPE, set.mm). This list of conventions is
intended to be read in conjunction with the corresponding conventions in
the Metamath Proof Explorer, and only the differences are described
below.
Label naming conventions Here are a few of the label naming conventions:
The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems.
(Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.) | ||||||||||||||||||||||||
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||
Theorem | ex-or 13757 | Example for ax-io 704. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||
⊢ (2 = 3 ∨ 4 = 4) | ||||||||||||||||||||||||||
Theorem | ex-an 13758 | Example for ax-ia1 105. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||
⊢ (2 = 2 ∧ 3 = 3) | ||||||||||||||||||||||||||
Theorem | 1kp2ke3k 13759 |
Example for df-dec 9344, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 9344 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) | ||||||||||||||||||||||||
⊢ (;;;1000 + ;;;2000) = ;;;3000 | ||||||||||||||||||||||||||
Theorem | ex-fl 13760 | Example for df-fl 10226. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||
⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) | ||||||||||||||||||||||||||
Theorem | ex-ceil 13761 | Example for df-ceil 10227. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
⊢ ((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1) | ||||||||||||||||||||||||||
Theorem | ex-exp 13762 | Example for df-exp 10476. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) | ||||||||||||||||||||||||||
Theorem | ex-fac 13763 | Example for df-fac 10660. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
⊢ (!‘5) = ;;120 | ||||||||||||||||||||||||||
Theorem | ex-bc 13764 | Example for df-bc 10682. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
⊢ (5C3) = ;10 | ||||||||||||||||||||||||||
Theorem | ex-dvds 13765 | Example for df-dvds 11750: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) | ||||||||||||||||||||||||
⊢ 3 ∥ 6 | ||||||||||||||||||||||||||
Theorem | ex-gcd 13766 | Example for df-gcd 11898. (Contributed by AV, 5-Sep-2021.) | ||||||||||||||||||||||||
⊢ (-6 gcd 9) = 3 | ||||||||||||||||||||||||||
Theorem | mathbox 13767 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.) | ||||||||||||||||||||||||
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||||||||||||||||||||||||||
Theorem | bj-nnsn 13768 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓)) | ||||||||||||||||||||||||||
Theorem | bj-nnor 13769 | Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
⊢ (¬ ¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||
Theorem | bj-nnim 13770 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (¬ ¬ (𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||
Theorem | bj-nnan 13771 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) | ||||||||||||||||||||||||||
Theorem | bj-nnclavius 13772 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||
⊢ ((¬ 𝜑 → 𝜑) → ¬ ¬ 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-imnimnn 13773 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 13772 as its last step. (Contributed by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||
⊢ (𝜑 → 𝜓) & ⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ ¬ ¬ 𝜓 | ||||||||||||||||||||||||||
Some of the following theorems, like bj-sttru 13775 or bj-stfal 13777 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest. | ||||||||||||||||||||||||||
Theorem | bj-trst 13774 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-sttru 13775 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
⊢ STAB ⊤ | ||||||||||||||||||||||||||
Theorem | bj-fast 13776 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (¬ 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-stfal 13777 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
⊢ STAB ⊥ | ||||||||||||||||||||||||||
Theorem | bj-nnst 13778 | Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 14025 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in ( → , ¬ ) -intuitionistic calculus with definitions (uses of ax-ia1 105, ax-ia2 106, ax-ia3 107 are via sylibr 133, necessary for definition unpackaging), and in ( → , ↔ , ¬ )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||
⊢ ¬ ¬ STAB 𝜑 | ||||||||||||||||||||||||||
Theorem | bj-nnbist 13779 | If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if 𝜑 is a classical tautology, then ¬ ¬ 𝜑 is an intuitionistic tautology. Therefore, if 𝜑 is a classical tautology, then 𝜑 is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 13792). (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (¬ ¬ 𝜑 → (STAB 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||
Theorem | bj-stst 13780 | Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
⊢ (STAB STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-stim 13781 | A conjunction with a stable consequent is stable. See stabnot 828 for negation , bj-stan 13782 for conjunction , and bj-stal 13784 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (STAB 𝜓 → STAB (𝜑 → 𝜓)) | ||||||||||||||||||||||||||
Theorem | bj-stan 13782 | The conjunction of two stable formulas is stable. See bj-stim 13781 for implication, stabnot 828 for negation, and bj-stal 13784 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ ((STAB 𝜑 ∧ STAB 𝜓) → STAB (𝜑 ∧ 𝜓)) | ||||||||||||||||||||||||||
Theorem | bj-stand 13783 | The conjunction of two stable formulas is stable. Deduction form of bj-stan 13782. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 13782 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
⊢ (𝜑 → STAB 𝜓) & ⊢ (𝜑 → STAB 𝜒) ⇒ ⊢ (𝜑 → STAB (𝜓 ∧ 𝜒)) | ||||||||||||||||||||||||||
Theorem | bj-stal 13784 | The universal quantification of a stable formula is stable. See bj-stim 13781 for implication, stabnot 828 for negation, and bj-stan 13782 for conjunction. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (∀𝑥STAB 𝜑 → STAB ∀𝑥𝜑) | ||||||||||||||||||||||||||
Theorem | bj-pm2.18st 13785 | Clavius law for stable formulas. See pm2.18dc 850. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||
⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜑) → 𝜑)) | ||||||||||||||||||||||||||
Theorem | bj-con1st 13786 | Contraposition when the antecedent is a negated stable proposition. See con1dc 851. (Contributed by BJ, 11-Nov-2024.) | ||||||||||||||||||||||||
⊢ (STAB 𝜑 → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||||||||||||||||||||||||||
Theorem | bj-trdc 13787 | A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-dctru 13788 | The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
⊢ DECID ⊤ | ||||||||||||||||||||||||||
Theorem | bj-fadc 13789 | A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (¬ 𝜑 → DECID 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-dcfal 13790 | The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
⊢ DECID ⊥ | ||||||||||||||||||||||||||
Theorem | bj-dcstab 13791 | A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
⊢ (DECID 𝜑 → STAB 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-nnbidc 13792 | If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 13779. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (¬ ¬ 𝜑 → (DECID 𝜑 ↔ 𝜑)) | ||||||||||||||||||||||||||
Theorem | bj-nndcALT 13793 | Alternate proof of nndc 846. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
⊢ ¬ ¬ DECID 𝜑 | ||||||||||||||||||||||||||
Theorem | bj-dcdc 13794 | Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
⊢ (DECID DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-stdc 13795 | Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
⊢ (STAB DECID 𝜑 ↔ DECID 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-dcst 13796 | Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
⊢ (DECID STAB 𝜑 ↔ STAB 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-ex 13797* | Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1591 and 19.9ht 1634 or 19.23ht 1490). (Proof modification is discouraged.) | ||||||||||||||||||||||||
⊢ (∃𝑥𝜑 → 𝜑) | ||||||||||||||||||||||||||
Theorem | bj-hbalt 13798 | Closed form of hbal 1470 (copied from set.mm). (Contributed by BJ, 2-May-2019.) | ||||||||||||||||||||||||
⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | ||||||||||||||||||||||||||
Theorem | bj-nfalt 13799 | Closed form of nfal 1569 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) | ||||||||||||||||||||||||||
Theorem | spimd 13800 | Deduction form of spim 1731. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||
⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |