HomeHome Intuitionistic Logic Explorer
Theorem List (p. 138 of 157)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13701-13800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsubrngrng 13701 A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)
 
Theoremsubrngrcl 13702 Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
(𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
 
Theoremsubrngsubg 13703 A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
(𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
 
Theoremsubrngringnsg 13704 A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
(𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))
 
Theoremsubrngbas 13705 Base set of a subring structure. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆))
 
Theoremsubrng0 13706 A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅s 𝐴)    &    0 = (0g𝑅)       (𝐴 ∈ (SubRng‘𝑅) → 0 = (0g𝑆))
 
Theoremsubrngacl 13707 A subring is closed under addition. (Contributed by AV, 14-Feb-2025.)
+ = (+g𝑅)       ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ∈ 𝐴)
 
Theoremsubrngmcl 13708 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 13732. (Revised by AV, 14-Feb-2025.)
· = (.r𝑅)       ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) ∈ 𝐴)
 
Theoremissubrng2 13709* Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
 
Theoremopprsubrngg 13710 Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))
 
Theoremsubrngintm 13711* The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
((𝑆 ⊆ (SubRng‘𝑅) ∧ ∃𝑗 𝑗𝑆) → 𝑆 ∈ (SubRng‘𝑅))
 
Theoremsubrngin 13712 The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.)
((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑅)) → (𝐴𝐵) ∈ (SubRng‘𝑅))
 
Theoremsubsubrng 13713 A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))
 
Theoremsubsubrng2 13714 The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴))
 
Theoremsubrngpropd 13715* If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
 
7.3.11.2  Subrings of unital rings
 
Syntaxcsubrg 13716 Extend class notation with all subrings of a ring.
class SubRing
 
Syntaxcrgspn 13717 Extend class notation with span of a set of elements over a ring.
class RingSpan
 
Definitiondf-subrg 13718* Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
 
Definitiondf-rgspn 13719* The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.)
RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠𝑡}))
 
Theoremissubrg 13720 The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
 
Theoremsubrgss 13721 A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐵 = (Base‘𝑅)       (𝐴 ∈ (SubRing‘𝑅) → 𝐴𝐵)
 
Theoremsubrgid 13722 Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
 
Theoremsubrgring 13723 A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
 
Theoremsubrgcrng 13724 A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑆 = (𝑅s 𝐴)       ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing)
 
Theoremsubrgrcl 13725 Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
 
Theoremsubrgsubg 13726 A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
 
Theoremsubrg0 13727 A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)    &    0 = (0g𝑅)       (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g𝑆))
 
Theoremsubrg1cl 13728 A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
1 = (1r𝑅)       (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
 
Theoremsubrgbas 13729 Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
 
Theoremsubrg1 13730 A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅s 𝐴)    &    1 = (1r𝑅)       (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))
 
Theoremsubrgacl 13731 A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.)
+ = (+g𝑅)       ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ∈ 𝐴)
 
Theoremsubrgmcl 13732 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
· = (.r𝑅)       ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝐴) → (𝑋 · 𝑌) ∈ 𝐴)
 
Theoremsubrgsubm 13733 A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑀 = (mulGrp‘𝑅)       (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubMnd‘𝑀))
 
Theoremsubrgdvds 13734 If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅s 𝐴)    &    = (∥r𝑅)    &   𝐸 = (∥r𝑆)       (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )
 
Theoremsubrguss 13735 A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅s 𝐴)    &   𝑈 = (Unit‘𝑅)    &   𝑉 = (Unit‘𝑆)       (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
 
Theoremsubrginv 13736 A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅s 𝐴)    &   𝐼 = (invr𝑅)    &   𝑈 = (Unit‘𝑆)    &   𝐽 = (invr𝑆)       ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑈) → (𝐼𝑋) = (𝐽𝑋))
 
Theoremsubrgdv 13737 A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅s 𝐴)    &    / = (/r𝑅)    &   𝑈 = (Unit‘𝑆)    &   𝐸 = (/r𝑆)       ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))
 
Theoremsubrgunit 13738 An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅s 𝐴)    &   𝑈 = (Unit‘𝑅)    &   𝑉 = (Unit‘𝑆)    &   𝐼 = (invr𝑅)       (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))
 
Theoremsubrgugrp 13739 The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅s 𝐴)    &   𝑈 = (Unit‘𝑅)    &   𝑉 = (Unit‘𝑆)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)       (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
 
Theoremissubrg2 13740* Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
 
Theoremsubrgnzr 13741 A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑆 = (𝑅s 𝐴)       ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ NzRing)
 
Theoremsubrgintm 13742* The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
 
Theoremsubrgin 13743 The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴𝐵) ∈ (SubRing‘𝑅))
 
Theoremsubsubrg 13744 A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))
 
Theoremsubsubrg2 13745 The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴))
 
Theoremissubrg3 13746 A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝑀 = (mulGrp‘𝑅)       (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀))))
 
Theoremresrhm 13747 Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
𝑈 = (𝑆s 𝑋)       ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹𝑋) ∈ (𝑈 RingHom 𝑇))
 
Theoremresrhm2b 13748 Restriction of the codomain of a (ring) homomorphism. resghm2b 13335 analog. (Contributed by SN, 7-Feb-2025.)
𝑈 = (𝑇s 𝑋)       ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))
 
Theoremrhmeql 13749 The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹𝐺) ∈ (SubRing‘𝑆))
 
Theoremrhmima 13750 The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹𝑋) ∈ (SubRing‘𝑁))
 
Theoremrnrhmsubrg 13751 The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
(𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁))
 
Theoremsubrgpropd 13752* If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿))
 
Theoremrhmpropd 13753* Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
(𝜑𝐵 = (Base‘𝐽))    &   (𝜑𝐶 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐶 = (Base‘𝑀))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐽)𝑦) = (𝑥(.r𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝑀)𝑦))       (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
 
7.3.12  Left regular elements and domains
 
Syntaxcrlreg 13754 Set of left-regular elements in a ring.
class RLReg
 
Syntaxcdomn 13755 Class of (ring theoretic) domains.
class Domn
 
Syntaxcidom 13756 Class of integral domains.
class IDomn
 
Definitiondf-rlreg 13757* Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.)
RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
 
Definitiondf-domn 13758* A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧))}
 
Definitiondf-idom 13759 An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
IDomn = (CRing ∩ Domn)
 
Theoremrrgmex 13760 A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
𝐸 = (RLReg‘𝑅)       (𝐴𝐸𝑅 ∈ V)
 
Theoremrrgval 13761* Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
𝐸 = (RLReg‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
 
Theoremisrrg 13762* Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
𝐸 = (RLReg‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵 ((𝑋 · 𝑦) = 0𝑦 = 0 )))
 
Theoremrrgeq0i 13763 Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.)
𝐸 = (RLReg‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
 
Theoremrrgeq0 13764 Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐸 = (RLReg‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
 
Theoremrrgss 13765 Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.)
𝐸 = (RLReg‘𝑅)    &   𝐵 = (Base‘𝑅)       𝐸𝐵
 
Theoremunitrrg 13766 Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
𝐸 = (RLReg‘𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ Ring → 𝑈𝐸)
 
Theoremrrgnz 13767 In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
𝐸 = (RLReg‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ NzRing → ¬ 0𝐸)
 
Theoremisdomn 13768* Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
 
Theoremdomnnzr 13769 A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
(𝑅 ∈ Domn → 𝑅 ∈ NzRing)
 
Theoremdomnring 13770 A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
(𝑅 ∈ Domn → 𝑅 ∈ Ring)
 
Theoremdomneq0 13771 In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
 
Theoremdomnmuln0 13772 In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
 
Theoremopprdomnbg 13773 A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 13774. (Contributed by SN, 15-Jun-2015.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))
 
Theoremopprdomn 13774 The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Domn → 𝑂 ∈ Domn)
 
Theoremisidom 13775 An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
(𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
 
Theoremidomdomd 13776 An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
(𝜑𝑅 ∈ IDomn)       (𝜑𝑅 ∈ Domn)
 
Theoremidomcringd 13777 An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
(𝜑𝑅 ∈ IDomn)       (𝜑𝑅 ∈ CRing)
 
Theoremidomringd 13778 An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
(𝜑𝑅 ∈ IDomn)       (𝜑𝑅 ∈ Ring)
 
7.4  Division rings and fields
 
7.4.1  Ring apartness
 
Syntaxcapr 13779 Extend class notation with ring apartness.
class #r
 
Definitiondf-apr 13780* The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13785. (Contributed by Jim Kingdon, 13-Feb-2025.)
#r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤))})
 
Theoremaprval 13781 Expand Definition df-apr 13780. (Contributed by Jim Kingdon, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑 = (-g𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))
 
Theoremaprirr 13782 The apartness relation given by df-apr 13780 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → (1r𝑅) ≠ (0g𝑅))       (𝜑 → ¬ 𝑋 # 𝑋)
 
Theoremaprsym 13783 The apartness relation given by df-apr 13780 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 # 𝑌𝑌 # 𝑋))
 
Theoremaprcotr 13784 The apartness relation given by df-apr 13780 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑# = (#r𝑅))    &   (𝜑𝑅 ∈ LRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 # 𝑌 → (𝑋 # 𝑍𝑌 # 𝑍)))
 
Theoremaprap 13785 The relation given by df-apr 13780 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
(𝑅 ∈ LRing → (#r𝑅) Ap (Base‘𝑅))
 
7.5  Left modules
 
7.5.1  Definition and basic properties
 
Syntaxclmod 13786 Extend class notation with class of all left modules.
class LMod
 
Syntaxcscaf 13787 The functionalization of the scalar multiplication operation.
class ·sf
 
Definitiondf-lmod 13788* Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.)
LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))}
 
Definitiondf-scaf 13789* Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
 
Theoremislmod 13790* The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)       (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤))))
 
Theoremlmodlema 13791 Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    = (+g𝐹)    &    × = (.r𝐹)    &    1 = (1r𝐹)       ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌)))
 
Theoremislmodd 13792* Properties that determine a left module. See note in isgrpd2 13096 regarding the 𝜑 on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.)
(𝜑𝑉 = (Base‘𝑊))    &   (𝜑+ = (+g𝑊))    &   (𝜑𝐹 = (Scalar‘𝑊))    &   (𝜑· = ( ·𝑠𝑊))    &   (𝜑𝐵 = (Base‘𝐹))    &   (𝜑 = (+g𝐹))    &   (𝜑× = (.r𝐹))    &   (𝜑1 = (1r𝐹))    &   (𝜑𝐹 ∈ Ring)    &   (𝜑𝑊 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝑉) → (𝑥 · 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝑉𝑧𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝑉)) → ((𝑥 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑𝑥𝑉) → ( 1 · 𝑥) = 𝑥)       (𝜑𝑊 ∈ LMod)
 
Theoremlmodgrp 13793 A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
(𝑊 ∈ LMod → 𝑊 ∈ Grp)
 
Theoremlmodring 13794 The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LMod → 𝐹 ∈ Ring)
 
Theoremlmodfgrp 13795 The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LMod → 𝐹 ∈ Grp)
 
Theoremlmodgrpd 13796 A left module is a group. (Contributed by SN, 16-May-2024.)
(𝜑𝑊 ∈ LMod)       (𝜑𝑊 ∈ Grp)
 
Theoremlmodbn0 13797 The base set of a left module is nonempty. It is also inhabited (by lmod0vcl 13816). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐵 = (Base‘𝑊)       (𝑊 ∈ LMod → 𝐵 ≠ ∅)
 
Theoremlmodacl 13798 Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    + = (+g𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
 
Theoremlmodmcl 13799 Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝐹)    &    · = (.r𝐹)       ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 · 𝑌) ∈ 𝐾)
 
Theoremlmodsn0 13800 The set of scalars in a left module is nonempty. It is also inhabited, by lmod0cl 13813. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)       (𝑊 ∈ LMod → 𝐵 ≠ ∅)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15644
  Copyright terms: Public domain < Previous  Next >