Detailed syntax breakdown of Definition df-omul
Step | Hyp | Ref
| Expression |
1 | | comu 6355 |
. 2
class
·o |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | con0 4322 |
. . 3
class
On |
5 | 3 | cv 1334 |
. . . 4
class 𝑦 |
6 | | vz |
. . . . . 6
setvar 𝑧 |
7 | | cvv 2712 |
. . . . . 6
class
V |
8 | 6 | cv 1334 |
. . . . . . 7
class 𝑧 |
9 | 2 | cv 1334 |
. . . . . . 7
class 𝑥 |
10 | | coa 6354 |
. . . . . . 7
class
+o |
11 | 8, 9, 10 | co 5818 |
. . . . . 6
class (𝑧 +o 𝑥) |
12 | 6, 7, 11 | cmpt 4025 |
. . . . 5
class (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) |
13 | | c0 3394 |
. . . . 5
class
∅ |
14 | 12, 13 | crdg 6310 |
. . . 4
class
rec((𝑧 ∈ V
↦ (𝑧 +o
𝑥)),
∅) |
15 | 5, 14 | cfv 5167 |
. . 3
class
(rec((𝑧 ∈ V
↦ (𝑧 +o
𝑥)), ∅)‘𝑦) |
16 | 2, 3, 4, 4, 15 | cmpo 5820 |
. 2
class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) |
17 | 1, 16 | wceq 1335 |
1
wff
·o = (𝑥
∈ On, 𝑦 ∈ On
↦ (rec((𝑧 ∈ V
↦ (𝑧 +o
𝑥)), ∅)‘𝑦)) |