Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omv | GIF version |
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
omv | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4370 | . . 3 ⊢ ∅ ∈ On | |
2 | omfnex 6417 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) | |
3 | rdgexggg 6345 | . . . 4 ⊢ (((𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V ∧ ∅ ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V) | |
4 | 2, 3 | syl3an1 1261 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V) |
5 | 1, 4 | mp3an2 1315 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V) |
6 | oveq2 5850 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 +o 𝑦) = (𝑥 +o 𝐴)) | |
7 | 6 | mpteq2dv 4073 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))) |
8 | rdgeq1 6339 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)) | |
9 | 7, 8 | syl 14 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)) |
10 | 9 | fveq1d 5488 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧)) |
11 | fveq2 5486 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) | |
12 | df-omul 6389 | . . 3 ⊢ ·o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧)) | |
13 | 10, 11, 12 | ovmpog 5976 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
14 | 5, 13 | mpd3an3 1328 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 ↦ cmpt 4043 Oncon0 4341 Fn wfn 5183 ‘cfv 5188 (class class class)co 5842 reccrdg 6337 +o coa 6381 ·o comu 6382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 |
This theorem is referenced by: om0 6426 omcl 6429 omv2 6433 |
Copyright terms: Public domain | W3C validator |