![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-oexpi | GIF version |
Description: Define the ordinal
exponentiation operation.
This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is ∅ or not. We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/. (Contributed by Mario Carneiro, 4-Jul-2019.) |
Ref | Expression |
---|---|
df-oexpi | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coei 6468 | . 2 class ↑o | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | con0 4394 | . . 3 class On | |
5 | 3 | cv 1363 | . . . 4 class 𝑦 |
6 | vz | . . . . . 6 setvar 𝑧 | |
7 | cvv 2760 | . . . . . 6 class V | |
8 | 6 | cv 1363 | . . . . . . 7 class 𝑧 |
9 | 2 | cv 1363 | . . . . . . 7 class 𝑥 |
10 | comu 6467 | . . . . . . 7 class ·o | |
11 | 8, 9, 10 | co 5918 | . . . . . 6 class (𝑧 ·o 𝑥) |
12 | 6, 7, 11 | cmpt 4090 | . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) |
13 | c1o 6462 | . . . . 5 class 1o | |
14 | 12, 13 | crdg 6422 | . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o) |
15 | 5, 14 | cfv 5254 | . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) |
16 | 2, 3, 4, 4, 15 | cmpo 5920 | . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
17 | 1, 16 | wceq 1364 | 1 wff ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
Colors of variables: wff set class |
This definition is referenced by: fnoei 6505 oeiexg 6506 oeiv 6509 |
Copyright terms: Public domain | W3C validator |