ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oexpi GIF version

Definition df-oexpi 6566
Description: Define the ordinal exponentiation operation.

This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is or not.

We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/.

(Contributed by Mario Carneiro, 4-Jul-2019.)

Assertion
Ref Expression
df-oexpi o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oexpi
StepHypRef Expression
1 coei 6559 . 2 class o
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 con0 4453 . . 3 class On
53cv 1394 . . . 4 class 𝑦
6 vz . . . . . 6 setvar 𝑧
7 cvv 2799 . . . . . 6 class V
86cv 1394 . . . . . . 7 class 𝑧
92cv 1394 . . . . . . 7 class 𝑥
10 comu 6558 . . . . . . 7 class ·o
118, 9, 10co 6000 . . . . . 6 class (𝑧 ·o 𝑥)
126, 7, 11cmpt 4144 . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·o 𝑥))
13 c1o 6553 . . . . 5 class 1o
1412, 13crdg 6513 . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)
155, 14cfv 5317 . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)
162, 3, 4, 4, 15cmpo 6002 . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
171, 16wceq 1395 1 wff o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
Colors of variables: wff set class
This definition is referenced by:  fnoei  6596  oeiexg  6597  oeiv  6600
  Copyright terms: Public domain W3C validator