![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-oexpi | GIF version |
Description: Define the ordinal
exponentiation operation.
This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is ∅ or not. We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/. (Contributed by Mario Carneiro, 4-Jul-2019.) |
Ref | Expression |
---|---|
df-oexpi | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coei 6470 | . 2 class ↑o | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | con0 4395 | . . 3 class On | |
5 | 3 | cv 1363 | . . . 4 class 𝑦 |
6 | vz | . . . . . 6 setvar 𝑧 | |
7 | cvv 2760 | . . . . . 6 class V | |
8 | 6 | cv 1363 | . . . . . . 7 class 𝑧 |
9 | 2 | cv 1363 | . . . . . . 7 class 𝑥 |
10 | comu 6469 | . . . . . . 7 class ·o | |
11 | 8, 9, 10 | co 5919 | . . . . . 6 class (𝑧 ·o 𝑥) |
12 | 6, 7, 11 | cmpt 4091 | . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) |
13 | c1o 6464 | . . . . 5 class 1o | |
14 | 12, 13 | crdg 6424 | . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o) |
15 | 5, 14 | cfv 5255 | . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) |
16 | 2, 3, 4, 4, 15 | cmpo 5921 | . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
17 | 1, 16 | wceq 1364 | 1 wff ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
Colors of variables: wff set class |
This definition is referenced by: fnoei 6507 oeiexg 6508 oeiv 6511 |
Copyright terms: Public domain | W3C validator |