| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-oexpi | GIF version | ||
| Description: Define the ordinal
exponentiation operation.
This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is ∅ or not. We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/. (Contributed by Mario Carneiro, 4-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-oexpi | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coei 6473 | . 2 class ↑o | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | con0 4398 | . . 3 class On | |
| 5 | 3 | cv 1363 | . . . 4 class 𝑦 |
| 6 | vz | . . . . . 6 setvar 𝑧 | |
| 7 | cvv 2763 | . . . . . 6 class V | |
| 8 | 6 | cv 1363 | . . . . . . 7 class 𝑧 |
| 9 | 2 | cv 1363 | . . . . . . 7 class 𝑥 |
| 10 | comu 6472 | . . . . . . 7 class ·o | |
| 11 | 8, 9, 10 | co 5922 | . . . . . 6 class (𝑧 ·o 𝑥) |
| 12 | 6, 7, 11 | cmpt 4094 | . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) |
| 13 | c1o 6467 | . . . . 5 class 1o | |
| 14 | 12, 13 | crdg 6427 | . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o) |
| 15 | 5, 14 | cfv 5258 | . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) |
| 16 | 2, 3, 4, 4, 15 | cmpo 5924 | . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
| 17 | 1, 16 | wceq 1364 | 1 wff ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
| Colors of variables: wff set class |
| This definition is referenced by: fnoei 6510 oeiexg 6511 oeiv 6514 |
| Copyright terms: Public domain | W3C validator |