ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-oexpi GIF version

Definition df-oexpi 6475
Description: Define the ordinal exponentiation operation.

This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is or not.

We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/.

(Contributed by Mario Carneiro, 4-Jul-2019.)

Assertion
Ref Expression
df-oexpi o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oexpi
StepHypRef Expression
1 coei 6468 . 2 class o
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 con0 4394 . . 3 class On
53cv 1363 . . . 4 class 𝑦
6 vz . . . . . 6 setvar 𝑧
7 cvv 2760 . . . . . 6 class V
86cv 1363 . . . . . . 7 class 𝑧
92cv 1363 . . . . . . 7 class 𝑥
10 comu 6467 . . . . . . 7 class ·o
118, 9, 10co 5918 . . . . . 6 class (𝑧 ·o 𝑥)
126, 7, 11cmpt 4090 . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·o 𝑥))
13 c1o 6462 . . . . 5 class 1o
1412, 13crdg 6422 . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)
155, 14cfv 5254 . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)
162, 3, 4, 4, 15cmpo 5920 . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
171, 16wceq 1364 1 wff o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
Colors of variables: wff set class
This definition is referenced by:  fnoei  6505  oeiexg  6506  oeiv  6509
  Copyright terms: Public domain W3C validator