| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-oexpi | GIF version | ||
| Description: Define the ordinal
exponentiation operation.
This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is ∅ or not. We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/. (Contributed by Mario Carneiro, 4-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-oexpi | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coei 6559 | . 2 class ↑o | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | con0 4453 | . . 3 class On | |
| 5 | 3 | cv 1394 | . . . 4 class 𝑦 |
| 6 | vz | . . . . . 6 setvar 𝑧 | |
| 7 | cvv 2799 | . . . . . 6 class V | |
| 8 | 6 | cv 1394 | . . . . . . 7 class 𝑧 |
| 9 | 2 | cv 1394 | . . . . . . 7 class 𝑥 |
| 10 | comu 6558 | . . . . . . 7 class ·o | |
| 11 | 8, 9, 10 | co 6000 | . . . . . 6 class (𝑧 ·o 𝑥) |
| 12 | 6, 7, 11 | cmpt 4144 | . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) |
| 13 | c1o 6553 | . . . . 5 class 1o | |
| 14 | 12, 13 | crdg 6513 | . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o) |
| 15 | 5, 14 | cfv 5317 | . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) |
| 16 | 2, 3, 4, 4, 15 | cmpo 6002 | . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
| 17 | 1, 16 | wceq 1395 | 1 wff ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) |
| Colors of variables: wff set class |
| This definition is referenced by: fnoei 6596 oeiexg 6597 oeiv 6600 |
| Copyright terms: Public domain | W3C validator |