![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omexg | GIF version |
Description: Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
omexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ·o 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2636 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | 0ex 3987 | . . . . 5 ⊢ ∅ ∈ V | |
3 | vex 2636 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | omfnex 6250 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) Fn V) | |
5 | 3, 4 | ax-mp 7 | . . . . 5 ⊢ (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) Fn V |
6 | 2, 5 | rdgexg 6192 | . . . 4 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V) |
7 | 1, 6 | ax-mp 7 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V |
8 | 7 | gen2 1391 | . 2 ⊢ ∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V |
9 | df-omul 6224 | . . 3 ⊢ ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) | |
10 | 9 | mpt2fvex 6011 | . 2 ⊢ ((∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ·o 𝐵) ∈ V) |
11 | 8, 10 | mp3an1 1267 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ·o 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1294 ∈ wcel 1445 Vcvv 2633 ∅c0 3302 ↦ cmpt 3921 Oncon0 4214 Fn wfn 5044 ‘cfv 5049 (class class class)co 5690 reccrdg 6172 +o coa 6216 ·o comu 6217 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-suc 4222 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-oadd 6223 df-omul 6224 |
This theorem is referenced by: fnoei 6253 oeiexg 6254 oeiv 6257 omv2 6266 |
Copyright terms: Public domain | W3C validator |