![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnom | GIF version |
Description: Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fnom | โข ยทo Fn (On ร On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-omul 6425 | . 2 โข ยทo = (๐ฅ โ On, ๐ฆ โ On โฆ (rec((๐ง โ V โฆ (๐ง +o ๐ฅ)), โ )โ๐ฆ)) | |
2 | vex 2742 | . . 3 โข ๐ฆ โ V | |
3 | 0ex 4132 | . . . 4 โข โ โ V | |
4 | vex 2742 | . . . . 5 โข ๐ฅ โ V | |
5 | omfnex 6453 | . . . . 5 โข (๐ฅ โ V โ (๐ง โ V โฆ (๐ง +o ๐ฅ)) Fn V) | |
6 | 4, 5 | ax-mp 5 | . . . 4 โข (๐ง โ V โฆ (๐ง +o ๐ฅ)) Fn V |
7 | 3, 6 | rdgexg 6393 | . . 3 โข (๐ฆ โ V โ (rec((๐ง โ V โฆ (๐ง +o ๐ฅ)), โ )โ๐ฆ) โ V) |
8 | 2, 7 | ax-mp 5 | . 2 โข (rec((๐ง โ V โฆ (๐ง +o ๐ฅ)), โ )โ๐ฆ) โ V |
9 | 1, 8 | fnmpoi 6208 | 1 โข ยทo Fn (On ร On) |
Colors of variables: wff set class |
Syntax hints: โ wcel 2148 Vcvv 2739 โ c0 3424 โฆ cmpt 4066 Oncon0 4365 ร cxp 4626 Fn wfn 5213 โcfv 5218 (class class class)co 5878 reccrdg 6373 +o coa 6417 ยทo comu 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-oadd 6424 df-omul 6425 |
This theorem is referenced by: dmmulpi 7328 |
Copyright terms: Public domain | W3C validator |