ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnom GIF version

Theorem fnom 6490
Description: Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
fnom ·o Fn (On × On)

Proof of Theorem fnom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-omul 6461 . 2 ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
2 vex 2759 . . 3 𝑦 ∈ V
3 0ex 4152 . . . 4 ∅ ∈ V
4 vex 2759 . . . . 5 𝑥 ∈ V
5 omfnex 6489 . . . . 5 (𝑥 ∈ V → (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) Fn V)
64, 5ax-mp 5 . . . 4 (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) Fn V
73, 6rdgexg 6429 . . 3 (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V)
82, 7ax-mp 5 . 2 (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V
91, 8fnmpoi 6244 1 ·o Fn (On × On)
Colors of variables: wff set class
Syntax hints:  wcel 2160  Vcvv 2756  c0 3442  cmpt 4086  Oncon0 4388   × cxp 4649   Fn wfn 5237  cfv 5242  (class class class)co 5906  reccrdg 6409   +o coa 6453   ·o comu 6454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-iord 4391  df-on 4393  df-suc 4396  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-recs 6345  df-irdg 6410  df-oadd 6460  df-omul 6461
This theorem is referenced by:  dmmulpi  7372
  Copyright terms: Public domain W3C validator