![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnom | GIF version |
Description: Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fnom | ⊢ ·o Fn (On × On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-omul 6461 | . 2 ⊢ ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) | |
2 | vex 2759 | . . 3 ⊢ 𝑦 ∈ V | |
3 | 0ex 4152 | . . . 4 ⊢ ∅ ∈ V | |
4 | vex 2759 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | omfnex 6489 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) Fn V) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) Fn V |
7 | 3, 6 | rdgexg 6429 | . . 3 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦) ∈ V |
9 | 1, 8 | fnmpoi 6244 | 1 ⊢ ·o Fn (On × On) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 Vcvv 2756 ∅c0 3442 ↦ cmpt 4086 Oncon0 4388 × cxp 4649 Fn wfn 5237 ‘cfv 5242 (class class class)co 5906 reccrdg 6409 +o coa 6453 ·o comu 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4140 ax-sep 4143 ax-nul 4151 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-nul 3443 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-iun 3910 df-br 4026 df-opab 4087 df-mpt 4088 df-tr 4124 df-id 4318 df-iord 4391 df-on 4393 df-suc 4396 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-f1 5247 df-fo 5248 df-f1o 5249 df-fv 5250 df-ov 5909 df-oprab 5910 df-mpo 5911 df-1st 6180 df-2nd 6181 df-recs 6345 df-irdg 6410 df-oadd 6460 df-omul 6461 |
This theorem is referenced by: dmmulpi 7372 |
Copyright terms: Public domain | W3C validator |