| Intuitionistic Logic Explorer Theorem List (p. 65 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | tfrlem1 6401* | A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) & ⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) | ||
| Theorem | tfrlem3ag 6402* | Lemma for transfinite recursion. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by Jim Kingdon, 5-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) | ||
| Theorem | tfrlem3a 6403* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) | ||
| Theorem | tfrlem3 6404* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} | ||
| Theorem | tfrlem3-2d 6405* | Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
| ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) | ||
| Theorem | tfrlem4 6406* | Lemma for transfinite recursion. 𝐴 is the class of all "acceptable" functions, and 𝐹 is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) | ||
| Theorem | tfrlem5 6407* | Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
| Theorem | recsfval 6408* | Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ recs(𝐹) = ∪ 𝐴 | ||
| Theorem | tfrlem6 6409* | Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Rel recs(𝐹) | ||
| Theorem | tfrlem7 6410* | Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Fun recs(𝐹) | ||
| Theorem | tfrlem8 6411* | Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Ord dom recs(𝐹) | ||
| Theorem | tfrlem9 6412* | Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) | ||
| Theorem | tfrfun 6413 | Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.) |
| ⊢ Fun recs(𝐹) | ||
| Theorem | tfr2a 6414 | A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
| Theorem | tfr0dm 6415 | Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹) | ||
| Theorem | tfr0 6416 | Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.) |
| ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅)) | ||
| Theorem | tfrlemisucfn 6417* | We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6425. (Contributed by Jim Kingdon, 2-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) | ||
| Theorem | tfrlemisucaccv 6418* | We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6425. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) | ||
| Theorem | tfrlemibacc 6419* | Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 6425. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
| Theorem | tfrlemibxssdm 6420* | The union of 𝐵 is defined on all ordinals. Lemma for tfrlemi1 6425. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝑥 ⊆ dom ∪ 𝐵) | ||
| Theorem | tfrlemibfn 6421* | The union of 𝐵 is a function defined on 𝑥. Lemma for tfrlemi1 6425. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝑥) | ||
| Theorem | tfrlemibex 6422* | The set 𝐵 exists. Lemma for tfrlemi1 6425. (Contributed by Jim Kingdon, 17-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | tfrlemiubacc 6423* | The union of 𝐵 satisfies the recursion rule (lemma for tfrlemi1 6425). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) | ||
| Theorem | tfrlemiex 6424* | Lemma for tfrlemi1 6425. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) | ||
| Theorem | tfrlemi1 6425* |
We can define an acceptable function on any ordinal.
As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) | ||
| Theorem | tfrlemi14d 6426* | The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → dom recs(𝐹) = On) | ||
| Theorem | tfrexlem 6427* | The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑉) → (recs(𝐹)‘𝐶) ∈ V) | ||
| Theorem | tfri1d 6428* |
Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → 𝐹 Fn On) | ||
| Theorem | tfri2d 6429* | Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6458). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
| Theorem | tfr1onlem3ag 6430* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6402 but for tfr1on 6443 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) | ||
| Theorem | tfr1onlem3 6431* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6404 but for tfr1on 6443 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} | ||
| Theorem | tfr1onlemssrecs 6432* | Lemma for tfr1on 6443. The union of functions acceptable for tfr1on 6443 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → Ord 𝑋) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) | ||
| Theorem | tfr1onlemsucfn 6433* | We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6443. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑧 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) | ||
| Theorem | tfr1onlemsucaccv 6434* | Lemma for tfr1on 6443. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑧 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | ||
| Theorem | tfr1onlembacc 6435* | Lemma for tfr1on 6443. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
| Theorem | tfr1onlembxssdm 6436* | Lemma for tfr1on 6443. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐷 ⊆ dom ∪ 𝐵) | ||
| Theorem | tfr1onlembfn 6437* | Lemma for tfr1on 6443. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝐷) | ||
| Theorem | tfr1onlembex 6438* | Lemma for tfr1on 6443. The set 𝐵 exists. (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | tfr1onlemubacc 6439* | Lemma for tfr1on 6443. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) | ||
| Theorem | tfr1onlemex 6440* | Lemma for tfr1on 6443. (Contributed by Jim Kingdon, 16-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) | ||
| Theorem | tfr1onlemaccex 6441* |
We can define an acceptable function on any element of 𝑋.
As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 16-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | ||
| Theorem | tfr1onlemres 6442* | Lemma for tfr1on 6443. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) | ||
| Theorem | tfr1on 6443* | Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) | ||
| Theorem | tfri1dALT 6444* |
Alternate proof of tfri1d 6428 in terms of tfr1on 6443.
Although this does show that the tfr1on 6443 proof is general enough to also prove tfri1d 6428, the tfri1d 6428 proof is simpler in places because it does not need to deal with 𝑋 being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → 𝐹 Fn On) | ||
| Theorem | tfrcllemssrecs 6445* | Lemma for tfrcl 6457. The union of functions acceptable for tfrcl 6457 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → Ord 𝑋) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) | ||
| Theorem | tfrcllemsucfn 6446* | We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6457. (Contributed by Jim Kingdon, 24-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑧 ∈ 𝑋) & ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) | ||
| Theorem | tfrcllemsucaccv 6447* | Lemma for tfrcl 6457. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑧 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | ||
| Theorem | tfrcllembacc 6448* | Lemma for tfrcl 6457. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
| Theorem | tfrcllembxssdm 6449* | Lemma for tfrcl 6457. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 25-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐷 ⊆ dom ∪ 𝐵) | ||
| Theorem | tfrcllembfn 6450* | Lemma for tfrcl 6457. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 25-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵:𝐷⟶𝑆) | ||
| Theorem | tfrcllembex 6451* | Lemma for tfrcl 6457. The set 𝐵 exists. (Contributed by Jim Kingdon, 25-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | tfrcllemubacc 6452* | Lemma for tfrcl 6457. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) | ||
| Theorem | tfrcllemex 6453* | Lemma for tfrcl 6457. (Contributed by Jim Kingdon, 26-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) | ||
| Theorem | tfrcllemaccex 6454* |
We can define an acceptable function on any element of 𝑋.
As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 26-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → ∃𝑔(𝑔:𝐶⟶𝑆 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | ||
| Theorem | tfrcllemres 6455* | Lemma for tfr1on 6443. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) | ||
| Theorem | tfrcldm 6456* | Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ∪ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ dom 𝐹) | ||
| Theorem | tfrcl 6457* | Closure for transfinite recursion. As with tfr1on 6443, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ∪ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝑆) | ||
| Theorem | tfri1 6458* |
Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) ⇒ ⊢ 𝐹 Fn On | ||
| Theorem | tfri2 6459* | Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6458). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) ⇒ ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
| Theorem | tfri3 6460* | Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6458). Finally, we show that 𝐹 is unique. We do this by showing that any class 𝐵 with the same properties of 𝐹 that we showed in parts 1 and 2 is identical to 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) ⇒ ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) | ||
| Theorem | tfrex 6461* | The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) ∈ V) | ||
| Syntax | crdg 6462 | Extend class notation with the recursive definition generator, with characteristic function 𝐹 and initial value 𝐼. |
| class rec(𝐹, 𝐼) | ||
| Definition | df-irdg 6463* |
Define a recursive definition generator on On (the
class of ordinal
numbers) with characteristic function 𝐹 and initial value 𝐼.
This rather amazing operation allows us to define, with compact direct
definitions, functions that are usually defined in textbooks only with
indirect self-referencing recursive definitions. A recursive definition
requires advanced metalogic to justify - in particular, eliminating a
recursive definition is very difficult and often not even shown in
textbooks. On the other hand, the elimination of a direct definition is
a matter of simple mechanical substitution. The price paid is the
daunting complexity of our rec operation
(especially when df-recs 6398
that it is built on is also eliminated). But once we get past this
hurdle, definitions that would otherwise be recursive become relatively
simple. In classical logic it would be easier to divide this definition
into cases based on whether the domain of 𝑔 is zero, a successor, or
a limit ordinal. Cases do not (in general) work that way in
intuitionistic logic, so instead we choose a definition which takes the
union of all the results of the characteristic function for ordinals in
the domain of 𝑔. This means that this definition has
the expected
properties for increasing and continuous ordinal functions, which
include ordinal addition and multiplication.
For finite recursion we also define df-frec 6484 and for suitable characteristic functions df-frec 6484 yields the same result as rec restricted to ω, as seen at frecrdg 6501. Note: We introduce rec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Jim Kingdon, 19-May-2019.) |
| ⊢ rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | ||
| Theorem | rdgeq1 6464 | Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) | ||
| Theorem | rdgeq2 6465 | Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) | ||
| Theorem | rdgfun 6466 | The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ Fun rec(𝐹, 𝐴) | ||
| Theorem | rdgtfr 6467* | The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.) |
| ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑓) ∈ V)) | ||
| Theorem | rdgruledefgg 6468* | The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) |
| ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑓) ∈ V)) | ||
| Theorem | rdgruledefg 6469* | The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) |
| ⊢ 𝐹 Fn V ⇒ ⊢ (𝐴 ∈ 𝑉 → (Fun (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑓) ∈ V)) | ||
| Theorem | rdgexggg 6470 | The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.) |
| ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) | ||
| Theorem | rdgexgg 6471 | The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.) |
| ⊢ 𝐹 Fn V ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) | ||
| Theorem | rdgifnon 6472 | The recursive definition generator is a function on ordinal numbers. The 𝐹 Fn V condition states that the characteristic function is defined for all sets (being defined for all ordinals might be enough if being used in a manner similar to rdgon 6479; in cases like df-oadd 6513 either presumably could work). (Contributed by Jim Kingdon, 13-Jul-2019.) |
| ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉) → rec(𝐹, 𝐴) Fn On) | ||
| Theorem | rdgifnon2 6473* | The recursive definition generator is a function on ordinal numbers. (Contributed by Jim Kingdon, 14-May-2020.) |
| ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → rec(𝐹, 𝐴) Fn On) | ||
| Theorem | rdgivallem 6474* | Value of the recursive definition generator. Lemma for rdgival 6475 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.) |
| ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))) | ||
| Theorem | rdgival 6475* | Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.) |
| ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | ||
| Theorem | rdgss 6476 | Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.) |
| ⊢ (𝜑 → 𝐹 Fn V) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵)) | ||
| Theorem | rdgisuc1 6477* |
One way of describing the value of the recursive definition generator at
a successor. There is no condition on the characteristic function 𝐹
other than 𝐹 Fn V. Given that, the resulting
expression
encompasses both the expected successor term
(𝐹‘(rec(𝐹, 𝐴)‘𝐵)) but also terms that correspond to
the initial value 𝐴 and to limit ordinals
∪ 𝑥 ∈ 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)).
If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6478. (Contributed by Jim Kingdon, 9-Jun-2019.) |
| ⊢ (𝜑 → 𝐹 Fn V) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ On) ⇒ ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) | ||
| Theorem | rdgisucinc 6478* |
Value of the recursive definition generator at a successor.
This can be thought of as a generalization of oasuc 6557 and omsuc 6565. (Contributed by Jim Kingdon, 29-Aug-2019.) |
| ⊢ (𝜑 → 𝐹 Fn V) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | ||
| Theorem | rdgon 6479* | Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑥 ∈ On (𝐹‘𝑥) ∈ On) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On) | ||
| Theorem | rdg0 6480 | The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (rec(𝐹, 𝐴)‘∅) = 𝐴 | ||
| Theorem | rdg0g 6481 | The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.) |
| ⊢ (𝐴 ∈ 𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | ||
| Theorem | rdgexg 6482 | The recursive definition generator produces a set on a set input. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐹 Fn V ⇒ ⊢ (𝐵 ∈ 𝑉 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) | ||
| Syntax | cfrec 6483 | Extend class notation with the finite recursive definition generator, with characteristic function 𝐹 and initial value 𝐼. |
| class frec(𝐹, 𝐼) | ||
| Definition | df-frec 6484* |
Define a recursive definition generator on ω (the
class of finite
ordinals) with characteristic function 𝐹 and initial value 𝐼.
This rather amazing operation allows us to define, with compact direct
definitions, functions that are usually defined in textbooks only with
indirect self-referencing recursive definitions. A recursive definition
requires advanced metalogic to justify - in particular, eliminating a
recursive definition is very difficult and often not even shown in
textbooks. On the other hand, the elimination of a direct definition is
a matter of simple mechanical substitution. The price paid is the
daunting complexity of our frec operation
(especially when df-recs 6398
that it is built on is also eliminated). But once we get past this
hurdle, definitions that would otherwise be recursive become relatively
simple; see frec0g 6490 and frecsuc 6500.
Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4656. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6501, this definition and df-irdg 6463 restricted to ω produce the same result. Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.) |
| ⊢ frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) | ||
| Theorem | freceq1 6485 | Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| ⊢ (𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴)) | ||
| Theorem | freceq2 6486 | Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| ⊢ (𝐴 = 𝐵 → frec(𝐹, 𝐴) = frec(𝐹, 𝐵)) | ||
| Theorem | frecex 6487 | Finite recursion produces a set. (Contributed by Jim Kingdon, 20-Aug-2021.) |
| ⊢ frec(𝐹, 𝐴) ∈ V | ||
| Theorem | frecfun 6488 | Finite recursion produces a function. See also frecfnom 6494 which also states that the domain of that function is ω but which puts conditions on 𝐴 and 𝐹. (Contributed by Jim Kingdon, 13-Feb-2022.) |
| ⊢ Fun frec(𝐹, 𝐴) | ||
| Theorem | nffrec 6489 | Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥frec(𝐹, 𝐴) | ||
| Theorem | frec0g 6490 | The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴) | ||
| Theorem | frecabex 6491* | The class abstraction from df-frec 6484 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑦(𝐹‘𝑦) ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑆‘𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) | ||
| Theorem | frecabcl 6492* | The class abstraction from df-frec 6484 exists. Unlike frecabex 6491 the function 𝐹 only needs to be defined on 𝑆, not all sets. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 21-Mar-2022.) |
| ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝐺:𝑁⟶𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 (𝐹‘𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝐺‘𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) | ||
| Theorem | frectfr 6493* |
Lemma to connect transfinite recursion theorems with finite recursion.
That is, given the conditions 𝐹 Fn V and 𝐴 ∈ 𝑉 on
frec(𝐹, 𝐴), we want to be able to apply tfri1d 6428 or tfri2d 6429,
and this lemma lets us satisfy hypotheses of those theorems.
(Contributed by Jim Kingdon, 15-Aug-2019.) |
| ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) ⇒ ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) | ||
| Theorem | frecfnom 6494* | The function generated by finite recursive definition generation is a function on omega. (Contributed by Jim Kingdon, 13-May-2020.) |
| ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → frec(𝐹, 𝐴) Fn ω) | ||
| Theorem | freccllem 6495* | Lemma for freccl 6496. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ ω) & ⊢ 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ⇒ ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) | ||
| Theorem | freccl 6496* | Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ ω) ⇒ ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) | ||
| Theorem | frecfcllem 6497* | Lemma for frecfcl 6498. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.) |
| ⊢ 𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ⇒ ⊢ ((∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → frec(𝐹, 𝐴):ω⟶𝑆) | ||
| Theorem | frecfcl 6498* | Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.) |
| ⊢ ((∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → frec(𝐹, 𝐴):ω⟶𝑆) | ||
| Theorem | frecsuclem 6499* | Lemma for frecsuc 6500. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.) |
| ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) ⇒ ⊢ ((∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵))) | ||
| Theorem | frecsuc 6500* | The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.) |
| ⊢ ((∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |