![]() |
Intuitionistic Logic Explorer Theorem List (p. 65 of 150) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frecabex 6401* | The class abstraction from df-frec 6394 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.) |
โข (๐ โ ๐ โ ๐) & โข (๐ โ โ๐ฆ(๐นโ๐ฆ) โ V) & โข (๐ โ ๐ด โ ๐) โ โข (๐ โ {๐ฅ โฃ (โ๐ โ ฯ (dom ๐ = suc ๐ โง ๐ฅ โ (๐นโ(๐โ๐))) โจ (dom ๐ = โ โง ๐ฅ โ ๐ด))} โ V) | ||
Theorem | frecabcl 6402* | The class abstraction from df-frec 6394 exists. Unlike frecabex 6401 the function ๐น only needs to be defined on ๐, not all sets. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 21-Mar-2022.) |
โข (๐ โ ๐ โ ฯ) & โข (๐ โ ๐บ:๐โถ๐) & โข (๐ โ โ๐ฆ โ ๐ (๐นโ๐ฆ) โ ๐) & โข (๐ โ ๐ด โ ๐) โ โข (๐ โ {๐ฅ โฃ (โ๐ โ ฯ (dom ๐บ = suc ๐ โง ๐ฅ โ (๐นโ(๐บโ๐))) โจ (dom ๐บ = โ โง ๐ฅ โ ๐ด))} โ ๐) | ||
Theorem | frectfr 6403* |
Lemma to connect transfinite recursion theorems with finite recursion.
That is, given the conditions ๐น Fn V and ๐ด โ ๐ on
frec(๐น, ๐ด), we want to be able to apply tfri1d 6338 or tfri2d 6339,
and this lemma lets us satisfy hypotheses of those theorems.
(Contributed by Jim Kingdon, 15-Aug-2019.) |
โข ๐บ = (๐ โ V โฆ {๐ฅ โฃ (โ๐ โ ฯ (dom ๐ = suc ๐ โง ๐ฅ โ (๐นโ(๐โ๐))) โจ (dom ๐ = โ โง ๐ฅ โ ๐ด))}) โ โข ((โ๐ง(๐นโ๐ง) โ V โง ๐ด โ ๐) โ โ๐ฆ(Fun ๐บ โง (๐บโ๐ฆ) โ V)) | ||
Theorem | frecfnom 6404* | The function generated by finite recursive definition generation is a function on omega. (Contributed by Jim Kingdon, 13-May-2020.) |
โข ((โ๐ง(๐นโ๐ง) โ V โง ๐ด โ ๐) โ frec(๐น, ๐ด) Fn ฯ) | ||
Theorem | freccllem 6405* | Lemma for freccl 6406. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.) |
โข (๐ โ ๐ด โ ๐) & โข ((๐ โง ๐ง โ ๐) โ (๐นโ๐ง) โ ๐) & โข (๐ โ ๐ต โ ฯ) & โข ๐บ = recs((๐ โ V โฆ {๐ฅ โฃ (โ๐ โ ฯ (dom ๐ = suc ๐ โง ๐ฅ โ (๐นโ(๐โ๐))) โจ (dom ๐ = โ โง ๐ฅ โ ๐ด))})) โ โข (๐ โ (frec(๐น, ๐ด)โ๐ต) โ ๐) | ||
Theorem | freccl 6406* | Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.) |
โข (๐ โ ๐ด โ ๐) & โข ((๐ โง ๐ง โ ๐) โ (๐นโ๐ง) โ ๐) & โข (๐ โ ๐ต โ ฯ) โ โข (๐ โ (frec(๐น, ๐ด)โ๐ต) โ ๐) | ||
Theorem | frecfcllem 6407* | Lemma for frecfcl 6408. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.) |
โข ๐บ = recs((๐ โ V โฆ {๐ฅ โฃ (โ๐ โ ฯ (dom ๐ = suc ๐ โง ๐ฅ โ (๐นโ(๐โ๐))) โจ (dom ๐ = โ โง ๐ฅ โ ๐ด))})) โ โข ((โ๐ง โ ๐ (๐นโ๐ง) โ ๐ โง ๐ด โ ๐) โ frec(๐น, ๐ด):ฯโถ๐) | ||
Theorem | frecfcl 6408* | Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.) |
โข ((โ๐ง โ ๐ (๐นโ๐ง) โ ๐ โง ๐ด โ ๐) โ frec(๐น, ๐ด):ฯโถ๐) | ||
Theorem | frecsuclem 6409* | Lemma for frecsuc 6410. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.) |
โข ๐บ = (๐ โ V โฆ {๐ฅ โฃ (โ๐ โ ฯ (dom ๐ = suc ๐ โง ๐ฅ โ (๐นโ(๐โ๐))) โจ (dom ๐ = โ โง ๐ฅ โ ๐ด))}) โ โข ((โ๐ง โ ๐ (๐นโ๐ง) โ ๐ โง ๐ด โ ๐ โง ๐ต โ ฯ) โ (frec(๐น, ๐ด)โsuc ๐ต) = (๐นโ(frec(๐น, ๐ด)โ๐ต))) | ||
Theorem | frecsuc 6410* | The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.) |
โข ((โ๐ง โ ๐ (๐นโ๐ง) โ ๐ โง ๐ด โ ๐ โง ๐ต โ ฯ) โ (frec(๐น, ๐ด)โsuc ๐ต) = (๐นโ(frec(๐น, ๐ด)โ๐ต))) | ||
Theorem | frecrdg 6411* |
Transfinite recursion restricted to omega.
Given a suitable characteristic function, df-frec 6394 produces the same results as df-irdg 6373 restricted to ฯ. Presumably the theorem would also hold if ๐น Fn V were changed to โ๐ง(๐นโ๐ง) โ V. (Contributed by Jim Kingdon, 29-Aug-2019.) |
โข (๐ โ ๐น Fn V) & โข (๐ โ ๐ด โ ๐) & โข (๐ โ โ๐ฅ ๐ฅ โ (๐นโ๐ฅ)) โ โข (๐ โ frec(๐น, ๐ด) = (rec(๐น, ๐ด) โพ ฯ)) | ||
Syntax | c1o 6412 | Extend the definition of a class to include the ordinal number 1. |
class 1o | ||
Syntax | c2o 6413 | Extend the definition of a class to include the ordinal number 2. |
class 2o | ||
Syntax | c3o 6414 | Extend the definition of a class to include the ordinal number 3. |
class 3o | ||
Syntax | c4o 6415 | Extend the definition of a class to include the ordinal number 4. |
class 4o | ||
Syntax | coa 6416 | Extend the definition of a class to include the ordinal addition operation. |
class +o | ||
Syntax | comu 6417 | Extend the definition of a class to include the ordinal multiplication operation. |
class ยทo | ||
Syntax | coei 6418 | Extend the definition of a class to include the ordinal exponentiation operation. |
class โo | ||
Definition | df-1o 6419 | Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.) |
โข 1o = suc โ | ||
Definition | df-2o 6420 | Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.) |
โข 2o = suc 1o | ||
Definition | df-3o 6421 | Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
โข 3o = suc 2o | ||
Definition | df-4o 6422 | Define the ordinal number 4. (Contributed by Mario Carneiro, 14-Jul-2013.) |
โข 4o = suc 3o | ||
Definition | df-oadd 6423* | Define the ordinal addition operation. (Contributed by NM, 3-May-1995.) |
โข +o = (๐ฅ โ On, ๐ฆ โ On โฆ (rec((๐ง โ V โฆ suc ๐ง), ๐ฅ)โ๐ฆ)) | ||
Definition | df-omul 6424* | Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.) |
โข ยทo = (๐ฅ โ On, ๐ฆ โ On โฆ (rec((๐ง โ V โฆ (๐ง +o ๐ฅ)), โ )โ๐ฆ)) | ||
Definition | df-oexpi 6425* |
Define the ordinal exponentiation operation.
This definition is similar to a conventional definition of exponentiation except that it defines โ โo ๐ด to be 1o for all ๐ด โ On, in order to avoid having different cases for whether the base is โ or not. We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/. (Contributed by Mario Carneiro, 4-Jul-2019.) |
โข โo = (๐ฅ โ On, ๐ฆ โ On โฆ (rec((๐ง โ V โฆ (๐ง ยทo ๐ฅ)), 1o)โ๐ฆ)) | ||
Theorem | 1on 6426 | Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
โข 1o โ On | ||
Theorem | 1oex 6427 | Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
โข 1o โ V | ||
Theorem | 2on 6428 | Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
โข 2o โ On | ||
Theorem | 2on0 6429 | Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
โข 2o โ โ | ||
Theorem | 3on 6430 | Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
โข 3o โ On | ||
Theorem | 4on 6431 | Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
โข 4o โ On | ||
Theorem | df1o2 6432 | Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.) |
โข 1o = {โ } | ||
Theorem | df2o3 6433 | Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
โข 2o = {โ , 1o} | ||
Theorem | df2o2 6434 | Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
โข 2o = {โ , {โ }} | ||
Theorem | 1n0 6435 | Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
โข 1o โ โ | ||
Theorem | xp01disj 6436 | Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.) |
โข ((๐ด ร {โ }) โฉ (๐ถ ร {1o})) = โ | ||
Theorem | xp01disjl 6437 | Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
โข (({โ } ร ๐ด) โฉ ({1o} ร ๐ถ)) = โ | ||
Theorem | ordgt0ge1 6438 | Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) |
โข (Ord ๐ด โ (โ โ ๐ด โ 1o โ ๐ด)) | ||
Theorem | ordge1n0im 6439 | An ordinal greater than or equal to 1 is nonzero. (Contributed by Jim Kingdon, 26-Jun-2019.) |
โข (Ord ๐ด โ (1o โ ๐ด โ ๐ด โ โ )) | ||
Theorem | el1o 6440 | Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
โข (๐ด โ 1o โ ๐ด = โ ) | ||
Theorem | dif1o 6441 | Two ways to say that ๐ด is a nonzero number of the set ๐ต. (Contributed by Mario Carneiro, 21-May-2015.) |
โข (๐ด โ (๐ต โ 1o) โ (๐ด โ ๐ต โง ๐ด โ โ )) | ||
Theorem | 2oconcl 6442 | Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.) |
โข (๐ด โ 2o โ (1o โ ๐ด) โ 2o) | ||
Theorem | 0lt1o 6443 | Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
โข โ โ 1o | ||
Theorem | 0lt2o 6444 | Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
โข โ โ 2o | ||
Theorem | 1lt2o 6445 | Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
โข 1o โ 2o | ||
Theorem | el2oss1o 6446 | Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 14828. (Contributed by Jim Kingdon, 8-Aug-2022.) |
โข (๐ด โ 2o โ ๐ด โ 1o) | ||
Theorem | oafnex 6447 | The characteristic function for ordinal addition is defined everywhere. (Contributed by Jim Kingdon, 27-Jul-2019.) |
โข (๐ฅ โ V โฆ suc ๐ฅ) Fn V | ||
Theorem | sucinc 6448* | Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.) |
โข ๐น = (๐ง โ V โฆ suc ๐ง) โ โข โ๐ฅ ๐ฅ โ (๐นโ๐ฅ) | ||
Theorem | sucinc2 6449* | Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.) |
โข ๐น = (๐ง โ V โฆ suc ๐ง) โ โข ((๐ต โ On โง ๐ด โ ๐ต) โ (๐นโ๐ด) โ (๐นโ๐ต)) | ||
Theorem | fnoa 6450 | Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.) |
โข +o Fn (On ร On) | ||
Theorem | oaexg 6451 | Ordinal addition is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) |
โข ((๐ด โ ๐ โง ๐ต โ ๐) โ (๐ด +o ๐ต) โ V) | ||
Theorem | omfnex 6452* | The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.) |
โข (๐ด โ ๐ โ (๐ฅ โ V โฆ (๐ฅ +o ๐ด)) Fn V) | ||
Theorem | fnom 6453 | Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.) |
โข ยทo Fn (On ร On) | ||
Theorem | omexg 6454 | Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) |
โข ((๐ด โ ๐ โง ๐ต โ ๐) โ (๐ด ยทo ๐ต) โ V) | ||
Theorem | fnoei 6455 | Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
โข โo Fn (On ร On) | ||
Theorem | oeiexg 6456 | Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) |
โข ((๐ด โ ๐ โง ๐ต โ ๐) โ (๐ด โo ๐ต) โ V) | ||
Theorem | oav 6457* | Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด +o ๐ต) = (rec((๐ฅ โ V โฆ suc ๐ฅ), ๐ด)โ๐ต)) | ||
Theorem | omv 6458* | Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด ยทo ๐ต) = (rec((๐ฅ โ V โฆ (๐ฅ +o ๐ด)), โ )โ๐ต)) | ||
Theorem | oeiv 6459* | Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด โo ๐ต) = (rec((๐ฅ โ V โฆ (๐ฅ ยทo ๐ด)), 1o)โ๐ต)) | ||
Theorem | oa0 6460 | Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
โข (๐ด โ On โ (๐ด +o โ ) = ๐ด) | ||
Theorem | om0 6461 | Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
โข (๐ด โ On โ (๐ด ยทo โ ) = โ ) | ||
Theorem | oei0 6462 | Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
โข (๐ด โ On โ (๐ด โo โ ) = 1o) | ||
Theorem | oacl 6463 | Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด +o ๐ต) โ On) | ||
Theorem | omcl 6464 | Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Constructive proof by Jim Kingdon, 26-Jul-2019.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด ยทo ๐ต) โ On) | ||
Theorem | oeicl 6465 | Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด โo ๐ต) โ On) | ||
Theorem | oav2 6466* | Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด +o ๐ต) = (๐ด โช โช ๐ฅ โ ๐ต suc (๐ด +o ๐ฅ))) | ||
Theorem | oasuc 6467 | Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด +o suc ๐ต) = suc (๐ด +o ๐ต)) | ||
Theorem | omv2 6468* | Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด ยทo ๐ต) = โช ๐ฅ โ ๐ต ((๐ด ยทo ๐ฅ) +o ๐ด)) | ||
Theorem | onasuc 6469 | Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by Mario Carneiro, 16-Nov-2014.) |
โข ((๐ด โ On โง ๐ต โ ฯ) โ (๐ด +o suc ๐ต) = suc (๐ด +o ๐ต)) | ||
Theorem | oa1suc 6470 | Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
โข (๐ด โ On โ (๐ด +o 1o) = suc ๐ด) | ||
Theorem | o1p1e2 6471 | 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004.) |
โข (1o +o 1o) = 2o | ||
Theorem | oawordi 6472 | Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.) |
โข ((๐ด โ On โง ๐ต โ On โง ๐ถ โ On) โ (๐ด โ ๐ต โ (๐ถ +o ๐ด) โ (๐ถ +o ๐ต))) | ||
Theorem | oawordriexmid 6473* | A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6472. (Contributed by Jim Kingdon, 15-May-2022.) |
โข ((๐ โ On โง ๐ โ On โง ๐ โ On) โ (๐ โ ๐ โ (๐ +o ๐) โ (๐ +o ๐))) โ โข (๐ โจ ยฌ ๐) | ||
Theorem | oaword1 6474 | An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. (Contributed by NM, 6-Dec-2004.) |
โข ((๐ด โ On โง ๐ต โ On) โ ๐ด โ (๐ด +o ๐ต)) | ||
Theorem | omsuc 6475 | Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
โข ((๐ด โ On โง ๐ต โ On) โ (๐ด ยทo suc ๐ต) = ((๐ด ยทo ๐ต) +o ๐ด)) | ||
Theorem | onmsuc 6476 | Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
โข ((๐ด โ On โง ๐ต โ ฯ) โ (๐ด ยทo suc ๐ต) = ((๐ด ยทo ๐ต) +o ๐ด)) | ||
Theorem | nna0 6477 | Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) |
โข (๐ด โ ฯ โ (๐ด +o โ ) = ๐ด) | ||
Theorem | nnm0 6478 | Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) |
โข (๐ด โ ฯ โ (๐ด ยทo โ ) = โ ) | ||
Theorem | nnasuc 6479 | Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด +o suc ๐ต) = suc (๐ด +o ๐ต)) | ||
Theorem | nnmsuc 6480 | Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด ยทo suc ๐ต) = ((๐ด ยทo ๐ต) +o ๐ด)) | ||
Theorem | nna0r 6481 | Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
โข (๐ด โ ฯ โ (โ +o ๐ด) = ๐ด) | ||
Theorem | nnm0r 6482 | Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
โข (๐ด โ ฯ โ (โ ยทo ๐ด) = โ ) | ||
Theorem | nnacl 6483 | Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด +o ๐ต) โ ฯ) | ||
Theorem | nnmcl 6484 | Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด ยทo ๐ต) โ ฯ) | ||
Theorem | nnacli 6485 | ฯ is closed under addition. Inference form of nnacl 6483. (Contributed by Scott Fenton, 20-Apr-2012.) |
โข ๐ด โ ฯ & โข ๐ต โ ฯ โ โข (๐ด +o ๐ต) โ ฯ | ||
Theorem | nnmcli 6486 | ฯ is closed under multiplication. Inference form of nnmcl 6484. (Contributed by Scott Fenton, 20-Apr-2012.) |
โข ๐ด โ ฯ & โข ๐ต โ ฯ โ โข (๐ด ยทo ๐ต) โ ฯ | ||
Theorem | nnacom 6487 | Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด +o ๐ต) = (๐ต +o ๐ด)) | ||
Theorem | nnaass 6488 | Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ ((๐ด +o ๐ต) +o ๐ถ) = (๐ด +o (๐ต +o ๐ถ))) | ||
Theorem | nndi 6489 | Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ (๐ด ยทo (๐ต +o ๐ถ)) = ((๐ด ยทo ๐ต) +o (๐ด ยทo ๐ถ))) | ||
Theorem | nnmass 6490 | Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ ((๐ด ยทo ๐ต) ยทo ๐ถ) = (๐ด ยทo (๐ต ยทo ๐ถ))) | ||
Theorem | nnmsucr 6491 | Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (suc ๐ด ยทo ๐ต) = ((๐ด ยทo ๐ต) +o ๐ต)) | ||
Theorem | nnmcom 6492 | Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด ยทo ๐ต) = (๐ต ยทo ๐ด)) | ||
Theorem | nndir 6493 | Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ ((๐ด +o ๐ต) ยทo ๐ถ) = ((๐ด ยทo ๐ถ) +o (๐ต ยทo ๐ถ))) | ||
Theorem | nnsucelsuc 6494 | Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4509, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4531. (Contributed by Jim Kingdon, 25-Aug-2019.) |
โข (๐ต โ ฯ โ (๐ด โ ๐ต โ suc ๐ด โ suc ๐ต)) | ||
Theorem | nnsucsssuc 6495 | Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4510, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4528. (Contributed by Jim Kingdon, 25-Aug-2019.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โ suc ๐ด โ suc ๐ต)) | ||
Theorem | nntri3or 6496 | Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โจ ๐ด = ๐ต โจ ๐ต โ ๐ด)) | ||
Theorem | nntri2 6497 | A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โ ยฌ (๐ด = ๐ต โจ ๐ต โ ๐ด))) | ||
Theorem | nnsucuniel 6498 | Given an element ๐ด of the union of a natural number ๐ต, suc ๐ด is an element of ๐ต itself. The reverse direction holds for all ordinals (sucunielr 4511). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4532). (Contributed by Jim Kingdon, 13-Mar-2022.) |
โข (๐ต โ ฯ โ (๐ด โ โช ๐ต โ suc ๐ด โ ๐ต)) | ||
Theorem | nntri1 6499 | A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โ ยฌ ๐ต โ ๐ด)) | ||
Theorem | nntri3 6500 | A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.) |
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด = ๐ต โ (ยฌ ๐ด โ ๐ต โง ยฌ ๐ต โ ๐ด))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |