HomeHome Intuitionistic Logic Explorer
Theorem List (p. 65 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6401-6500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtfrexlem 6401* The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}    &   (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))       ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
 
Theoremtfri1d 6402* Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺𝑥) ∈ V. Alternately, 𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥𝑓 ∈ dom 𝐺) would suffice.

Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

𝐹 = recs(𝐺)    &   (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))       (𝜑𝐹 Fn On)
 
Theoremtfri2d 6403* Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6432). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
𝐹 = recs(𝐺)    &   (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))       ((𝜑𝐴 ∈ On) → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
 
Theoremtfr1onlem3ag 6404* Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6376 but for tfr1on 6417 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}       (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
 
Theoremtfr1onlem3 6405* Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6378 but for tfr1on 6417 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}       𝐴 = {𝑔 ∣ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
 
Theoremtfr1onlemssrecs 6406* Lemma for tfr1on 6417. The union of functions acceptable for tfr1on 6417 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑 → Ord 𝑋)       (𝜑 𝐴 ⊆ recs(𝐺))
 
Theoremtfr1onlemsucfn 6407* We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6417. (Contributed by Jim Kingdon, 12-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑧𝑋)    &   (𝜑𝑔 Fn 𝑧)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
 
Theoremtfr1onlemsucaccv 6408* Lemma for tfr1on 6417. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑌𝑋)    &   (𝜑𝑧𝑌)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑔 Fn 𝑧)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
 
Theoremtfr1onlembacc 6409* Lemma for tfr1on 6417. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵𝐴)
 
Theoremtfr1onlembxssdm 6410* Lemma for tfr1on 6417. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐷 ⊆ dom 𝐵)
 
Theoremtfr1onlembfn 6411* Lemma for tfr1on 6417. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 15-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 𝐵 Fn 𝐷)
 
Theoremtfr1onlembex 6412* Lemma for tfr1on 6417. The set 𝐵 exists. (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵 ∈ V)
 
Theoremtfr1onlemubacc 6413* Lemma for tfr1on 6417. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
 
Theoremtfr1onlemex 6414* Lemma for tfr1on 6417. (Contributed by Jim Kingdon, 16-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
 
Theoremtfr1onlemaccex 6415* We can define an acceptable function on any element of 𝑋.

As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 16-Mar-2022.)

𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)       ((𝜑𝐶𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
 
Theoremtfr1onlemres 6416* Lemma for tfr1on 6417. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌𝑋)       (𝜑𝑌 ⊆ dom 𝐹)
 
Theoremtfr1on 6417* Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌𝑋)       (𝜑𝑌 ⊆ dom 𝐹)
 
Theoremtfri1dALT 6418* Alternate proof of tfri1d 6402 in terms of tfr1on 6417.

Although this does show that the tfr1on 6417 proof is general enough to also prove tfri1d 6402, the tfri1d 6402 proof is simpler in places because it does not need to deal with 𝑋 being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

𝐹 = recs(𝐺)    &   (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))       (𝜑𝐹 Fn On)
 
Theoremtfrcllemssrecs 6419* Lemma for tfrcl 6431. The union of functions acceptable for tfrcl 6431 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑 → Ord 𝑋)       (𝜑 𝐴 ⊆ recs(𝐺))
 
Theoremtfrcllemsucfn 6420* We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6431. (Contributed by Jim Kingdon, 24-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑧𝑋)    &   (𝜑𝑔:𝑧𝑆)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
 
Theoremtfrcllemsucaccv 6421* Lemma for tfrcl 6431. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑌𝑋)    &   (𝜑𝑧𝑌)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑔:𝑧𝑆)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
 
Theoremtfrcllembacc 6422* Lemma for tfrcl 6431. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵𝐴)
 
Theoremtfrcllembxssdm 6423* Lemma for tfrcl 6431. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐷 ⊆ dom 𝐵)
 
Theoremtfrcllembfn 6424* Lemma for tfrcl 6431. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 𝐵:𝐷𝑆)
 
Theoremtfrcllembex 6425* Lemma for tfrcl 6431. The set 𝐵 exists. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵 ∈ V)
 
Theoremtfrcllemubacc 6426* Lemma for tfrcl 6431. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
 
Theoremtfrcllemex 6427* Lemma for tfrcl 6431. (Contributed by Jim Kingdon, 26-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
 
Theoremtfrcllemaccex 6428* We can define an acceptable function on any element of 𝑋.

As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 26-Mar-2022.)

𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)       ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
 
Theoremtfrcllemres 6429* Lemma for tfr1on 6417. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌𝑋)       (𝜑𝑌 ⊆ dom 𝐹)
 
Theoremtfrcldm 6430* Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌 𝑋)       (𝜑𝑌 ∈ dom 𝐹)
 
Theoremtfrcl 6431* Closure for transfinite recursion. As with tfr1on 6417, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌 𝑋)       (𝜑 → (𝐹𝑌) ∈ 𝑆)
 
Theoremtfri1 6432* Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺𝑥) ∈ V. Alternately, 𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥𝑓 ∈ dom 𝐺) would suffice.

Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

𝐹 = recs(𝐺)    &   (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)       𝐹 Fn On
 
Theoremtfri2 6433* Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6432). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
𝐹 = recs(𝐺)    &   (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)       (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
 
Theoremtfri3 6434* Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6432). Finally, we show that 𝐹 is unique. We do this by showing that any class 𝐵 with the same properties of 𝐹 that we showed in parts 1 and 2 is identical to 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
𝐹 = recs(𝐺)    &   (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)       ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
 
Theoremtfrex 6435* The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = recs(𝐺)    &   (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))       ((𝜑𝐴𝑉) → (𝐹𝐴) ∈ V)
 
2.6.21  Recursive definition generator
 
Syntaxcrdg 6436 Extend class notation with the recursive definition generator, with characteristic function 𝐹 and initial value 𝐼.
class rec(𝐹, 𝐼)
 
Definitiondf-irdg 6437* Define a recursive definition generator on On (the class of ordinal numbers) with characteristic function 𝐹 and initial value 𝐼. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our rec operation (especially when df-recs 6372 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple. In classical logic it would be easier to divide this definition into cases based on whether the domain of 𝑔 is zero, a successor, or a limit ordinal. Cases do not (in general) work that way in intuitionistic logic, so instead we choose a definition which takes the union of all the results of the characteristic function for ordinals in the domain of 𝑔. This means that this definition has the expected properties for increasing and continuous ordinal functions, which include ordinal addition and multiplication.

For finite recursion we also define df-frec 6458 and for suitable characteristic functions df-frec 6458 yields the same result as rec restricted to ω, as seen at frecrdg 6475.

Note: We introduce rec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Jim Kingdon, 19-May-2019.)

rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
 
Theoremrdgeq1 6438 Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
(𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴))
 
Theoremrdgeq2 6439 Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
(𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
 
Theoremrdgfun 6440 The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.)
Fun rec(𝐹, 𝐴)
 
Theoremrdgtfr 6441* The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
 
Theoremrdgruledefgg 6442* The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
 
Theoremrdgruledefg 6443* The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
𝐹 Fn V       (𝐴𝑉 → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
 
Theoremrdgexggg 6444 The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.)
((𝐹 Fn V ∧ 𝐴𝑉𝐵𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
 
Theoremrdgexgg 6445 The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.)
𝐹 Fn V       ((𝐴𝑉𝐵𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
 
Theoremrdgifnon 6446 The recursive definition generator is a function on ordinal numbers. The 𝐹 Fn V condition states that the characteristic function is defined for all sets (being defined for all ordinals might be enough if being used in a manner similar to rdgon 6453; in cases like df-oadd 6487 either presumably could work). (Contributed by Jim Kingdon, 13-Jul-2019.)
((𝐹 Fn V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
 
Theoremrdgifnon2 6447* The recursive definition generator is a function on ordinal numbers. (Contributed by Jim Kingdon, 14-May-2020.)
((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
 
Theoremrdgivallem 6448* Value of the recursive definition generator. Lemma for rdgival 6449 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.)
((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
 
Theoremrdgival 6449* Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.)
((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
 
Theoremrdgss 6450 Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
(𝜑𝐹 Fn V)    &   (𝜑𝐼𝑉)    &   (𝜑𝐴 ∈ On)    &   (𝜑𝐵 ∈ On)    &   (𝜑𝐴𝐵)       (𝜑 → (rec(𝐹, 𝐼)‘𝐴) ⊆ (rec(𝐹, 𝐼)‘𝐵))
 
Theoremrdgisuc1 6451* One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function 𝐹 other than 𝐹 Fn V. Given that, the resulting expression encompasses both the expected successor term (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) but also terms that correspond to the initial value 𝐴 and to limit ordinals 𝑥𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6452. (Contributed by Jim Kingdon, 9-Jun-2019.)

(𝜑𝐹 Fn V)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵 ∈ On)       (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
 
Theoremrdgisucinc 6452* Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6531 and omsuc 6539. (Contributed by Jim Kingdon, 29-Aug-2019.)

(𝜑𝐹 Fn V)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵 ∈ On)    &   (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))       (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
 
Theoremrdgon 6453* Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
(𝜑𝐴 ∈ On)    &   (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)       ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
 
Theoremrdg0 6454 The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
𝐴 ∈ V       (rec(𝐹, 𝐴)‘∅) = 𝐴
 
Theoremrdg0g 6455 The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
(𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
 
Theoremrdgexg 6456 The recursive definition generator produces a set on a set input. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐴 ∈ V    &   𝐹 Fn V       (𝐵𝑉 → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
 
2.6.22  Finite recursion
 
Syntaxcfrec 6457 Extend class notation with the finite recursive definition generator, with characteristic function 𝐹 and initial value 𝐼.
class frec(𝐹, 𝐼)
 
Definitiondf-frec 6458* Define a recursive definition generator on ω (the class of finite ordinals) with characteristic function 𝐹 and initial value 𝐼. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6372 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6464 and frecsuc 6474.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4641. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6475, this definition and df-irdg 6437 restricted to ω produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})) ↾ ω)
 
Theoremfreceq1 6459 Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
(𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))
 
Theoremfreceq2 6460 Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
(𝐴 = 𝐵 → frec(𝐹, 𝐴) = frec(𝐹, 𝐵))
 
Theoremfrecex 6461 Finite recursion produces a set. (Contributed by Jim Kingdon, 20-Aug-2021.)
frec(𝐹, 𝐴) ∈ V
 
Theoremfrecfun 6462 Finite recursion produces a function. See also frecfnom 6468 which also states that the domain of that function is ω but which puts conditions on 𝐴 and 𝐹. (Contributed by Jim Kingdon, 13-Feb-2022.)
Fun frec(𝐹, 𝐴)
 
Theoremnffrec 6463 Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
𝑥𝐹    &   𝑥𝐴       𝑥frec(𝐹, 𝐴)
 
Theoremfrec0g 6464 The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
(𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
 
Theoremfrecabex 6465* The class abstraction from df-frec 6458 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
(𝜑𝑆𝑉)    &   (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)    &   (𝜑𝐴𝑊)       (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
 
Theoremfrecabcl 6466* The class abstraction from df-frec 6458 exists. Unlike frecabex 6465 the function 𝐹 only needs to be defined on 𝑆, not all sets. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 21-Mar-2022.)
(𝜑𝑁 ∈ ω)    &   (𝜑𝐺:𝑁𝑆)    &   (𝜑 → ∀𝑦𝑆 (𝐹𝑦) ∈ 𝑆)    &   (𝜑𝐴𝑆)       (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚𝑥 ∈ (𝐹‘(𝐺𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
 
Theoremfrectfr 6467* Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions 𝐹 Fn V and 𝐴𝑉 on frec(𝐹, 𝐴), we want to be able to apply tfri1d 6402 or tfri2d 6403, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})       ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
 
Theoremfrecfnom 6468* The function generated by finite recursive definition generation is a function on omega. (Contributed by Jim Kingdon, 13-May-2020.)
((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → frec(𝐹, 𝐴) Fn ω)
 
Theoremfreccllem 6469* Lemma for freccl 6470. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
(𝜑𝐴𝑆)    &   ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)    &   (𝜑𝐵 ∈ ω)    &   𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))       (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 
Theoremfreccl 6470* Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.)
(𝜑𝐴𝑆)    &   ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 
Theoremfrecfcllem 6471* Lemma for frecfcl 6472. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))       ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
 
Theoremfrecfcl 6472* Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.)
((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
 
Theoremfrecsuclem 6473* Lemma for frecsuc 6474. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.)
𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})       ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
 
Theoremfrecsuc 6474* The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
 
Theoremfrecrdg 6475* Transfinite recursion restricted to omega.

Given a suitable characteristic function, df-frec 6458 produces the same results as df-irdg 6437 restricted to ω.

Presumably the theorem would also hold if 𝐹 Fn V were changed to 𝑧(𝐹𝑧) ∈ V. (Contributed by Jim Kingdon, 29-Aug-2019.)

(𝜑𝐹 Fn V)    &   (𝜑𝐴𝑉)    &   (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))       (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
 
2.6.23  Ordinal arithmetic
 
Syntaxc1o 6476 Extend the definition of a class to include the ordinal number 1.
class 1o
 
Syntaxc2o 6477 Extend the definition of a class to include the ordinal number 2.
class 2o
 
Syntaxc3o 6478 Extend the definition of a class to include the ordinal number 3.
class 3o
 
Syntaxc4o 6479 Extend the definition of a class to include the ordinal number 4.
class 4o
 
Syntaxcoa 6480 Extend the definition of a class to include the ordinal addition operation.
class +o
 
Syntaxcomu 6481 Extend the definition of a class to include the ordinal multiplication operation.
class ·o
 
Syntaxcoei 6482 Extend the definition of a class to include the ordinal exponentiation operation.
class o
 
Definitiondf-1o 6483 Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.)
1o = suc ∅
 
Definitiondf-2o 6484 Define the ordinal number 2. (Contributed by NM, 18-Feb-2004.)
2o = suc 1o
 
Definitiondf-3o 6485 Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.)
3o = suc 2o
 
Definitiondf-4o 6486 Define the ordinal number 4. (Contributed by Mario Carneiro, 14-Jul-2013.)
4o = suc 3o
 
Definitiondf-oadd 6487* Define the ordinal addition operation. (Contributed by NM, 3-May-1995.)
+o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
 
Definitiondf-omul 6488* Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.)
·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
 
Definitiondf-oexpi 6489* Define the ordinal exponentiation operation.

This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑o 𝐴 to be 1o for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is or not.

We do not yet have an extensive development of ordinal exponentiation. For background on ordinal exponentiation without excluded middle, see Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu (2025), "Ordinal Exponentiation in Homotopy Type Theory", arXiv:2501.14542 , https://arxiv.org/abs/2501.14542 which is formalized in the TypeTopology proof library at https://ordinal-exponentiation-hott.github.io/.

(Contributed by Mario Carneiro, 4-Jul-2019.)

o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
 
Theorem1on 6490 Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.)
1o ∈ On
 
Theorem1oex 6491 Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.)
1o ∈ V
 
Theorem2on 6492 Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
2o ∈ On
 
Theorem2on0 6493 Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
2o ≠ ∅
 
Theorem3on 6494 Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
3o ∈ On
 
Theorem4on 6495 Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.)
4o ∈ On
 
Theoremdf1o2 6496 Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
1o = {∅}
 
Theoremdf2o3 6497 Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
2o = {∅, 1o}
 
Theoremdf2o2 6498 Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
2o = {∅, {∅}}
 
Theorem1n0 6499 Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.)
1o ≠ ∅
 
Theoremxp01disj 6500 Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >