| Intuitionistic Logic Explorer Theorem List (p. 65 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | tposssxp 6401 | The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | ||
| Theorem | reltpos 6402 | The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ Rel tpos 𝐹 | ||
| Theorem | brtpos2 6403 | Value of the transposition at a pair 〈𝐴, 𝐵〉. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) | ||
| Theorem | brtpos0 6404 | The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) | ||
| Theorem | reldmtpos 6405 | Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | ||
| Theorem | brtposg 6406 | The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
| Theorem | ottposg 6407 | The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) | ||
| Theorem | dmtpos 6408 | The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | ||
| Theorem | rntpos 6409 | The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | ||
| Theorem | tposexg 6410 | The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | ||
| Theorem | ovtposg 6411 | The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)) | ||
| Theorem | tposfun 6412 | The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Fun 𝐹 → Fun tpos 𝐹) | ||
| Theorem | dftpos2 6413* | Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) | ||
| Theorem | dftpos3 6414* | Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 4727. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (Rel dom 𝐹 → tpos 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 〈𝑦, 𝑥〉𝐹𝑧}) | ||
| Theorem | dftpos4 6415* | Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
| Theorem | tpostpos 6416 | Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | ||
| Theorem | tpostpos2 6417 | Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) | ||
| Theorem | tposfn2 6418 | The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | ||
| Theorem | tposfo2 6419 | Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | ||
| Theorem | tposf2 6420 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) | ||
| Theorem | tposf12 6421 | Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | ||
| Theorem | tposf1o2 6422 | Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) | ||
| Theorem | tposfo 6423 | The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) | ||
| Theorem | tposf 6424 | The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) | ||
| Theorem | tposfn 6425 | Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) | ||
| Theorem | tpos0 6426 | Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
| ⊢ tpos ∅ = ∅ | ||
| Theorem | tposco 6427 | Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) | ||
| Theorem | tpossym 6428* | Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) | ||
| Theorem | tposeqi 6429 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 = 𝐺 ⇒ ⊢ tpos 𝐹 = tpos 𝐺 | ||
| Theorem | tposex 6430 | A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ tpos 𝐹 ∈ V | ||
| Theorem | nftpos 6431 | Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥tpos 𝐹 | ||
| Theorem | tposoprab 6432* | Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ 𝜑} | ||
| Theorem | tposmpo 6433* | Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) | ||
| Theorem | pwuninel2 6434 | The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | 2pwuninelg 6435 | The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | iunon 6436* | The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) | ||
| Syntax | wsmo 6437 | Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals. |
| wff Smo 𝐴 | ||
| Definition | df-smo 6438* | Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.) |
| ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | ||
| Theorem | dfsmo2 6439* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
| ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | ||
| Theorem | issmo 6440* | Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
| ⊢ 𝐴:𝐵⟶On & ⊢ Ord 𝐵 & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) & ⊢ dom 𝐴 = 𝐵 ⇒ ⊢ Smo 𝐴 | ||
| Theorem | issmo2 6441* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) | ||
| Theorem | smoeq 6442 | Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| ⊢ (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵)) | ||
| Theorem | smodm 6443 | The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| ⊢ (Smo 𝐴 → Ord dom 𝐴) | ||
| Theorem | smores 6444 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ((Smo 𝐴 ∧ 𝐵 ∈ dom 𝐴) → Smo (𝐴 ↾ 𝐵)) | ||
| Theorem | smores3 6445 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) | ||
| Theorem | smores2 6446 | A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| ⊢ ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹 ↾ 𝐴)) | ||
| Theorem | smodm2 6447 | The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | ||
| Theorem | smofvon2dm 6448 | The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) | ||
| Theorem | iordsmo 6449 | The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| ⊢ Ord 𝐴 ⇒ ⊢ Smo ( I ↾ 𝐴) | ||
| Theorem | smo0 6450 | The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
| ⊢ Smo ∅ | ||
| Theorem | smofvon 6451 | If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
| ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | ||
| Theorem | smoel 6452 | If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.) |
| ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐵‘𝐶) ∈ (𝐵‘𝐴)) | ||
| Theorem | smoiun 6453* | The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
| ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) | ||
| Theorem | smoiso 6454 | If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
| ⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) | ||
| Theorem | smoel2 6455 | A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | ||
| Syntax | crecs 6456 | Notation for a function defined by strong transfinite recursion. |
| class recs(𝐹) | ||
| Definition | df-recs 6457* |
Define a function recs(𝐹) on On, the
class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6522 for more details on why
this definition is desirable. Unlike df-irdg 6522 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6487 and
tfri2d 6488 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | ||
| Theorem | recseq 6458 | Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) | ||
| Theorem | nfrecs 6459 | Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥recs(𝐹) | ||
| Theorem | tfrlem1 6460* | A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) & ⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) | ||
| Theorem | tfrlem3ag 6461* | Lemma for transfinite recursion. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by Jim Kingdon, 5-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) | ||
| Theorem | tfrlem3a 6462* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) | ||
| Theorem | tfrlem3 6463* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} | ||
| Theorem | tfrlem3-2d 6464* | Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
| ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) | ||
| Theorem | tfrlem4 6465* | Lemma for transfinite recursion. 𝐴 is the class of all "acceptable" functions, and 𝐹 is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) | ||
| Theorem | tfrlem5 6466* | Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
| Theorem | recsfval 6467* | Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ recs(𝐹) = ∪ 𝐴 | ||
| Theorem | tfrlem6 6468* | Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Rel recs(𝐹) | ||
| Theorem | tfrlem7 6469* | Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Fun recs(𝐹) | ||
| Theorem | tfrlem8 6470* | Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Ord dom recs(𝐹) | ||
| Theorem | tfrlem9 6471* | Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) | ||
| Theorem | tfrfun 6472 | Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.) |
| ⊢ Fun recs(𝐹) | ||
| Theorem | tfr2a 6473 | A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
| Theorem | tfr0dm 6474 | Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹) | ||
| Theorem | tfr0 6475 | Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.) |
| ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅)) | ||
| Theorem | tfrlemisucfn 6476* | We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6484. (Contributed by Jim Kingdon, 2-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) | ||
| Theorem | tfrlemisucaccv 6477* | We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6484. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) | ||
| Theorem | tfrlemibacc 6478* | Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 6484. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
| Theorem | tfrlemibxssdm 6479* | The union of 𝐵 is defined on all ordinals. Lemma for tfrlemi1 6484. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝑥 ⊆ dom ∪ 𝐵) | ||
| Theorem | tfrlemibfn 6480* | The union of 𝐵 is a function defined on 𝑥. Lemma for tfrlemi1 6484. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝑥) | ||
| Theorem | tfrlemibex 6481* | The set 𝐵 exists. Lemma for tfrlemi1 6484. (Contributed by Jim Kingdon, 17-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | tfrlemiubacc 6482* | The union of 𝐵 satisfies the recursion rule (lemma for tfrlemi1 6484). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) | ||
| Theorem | tfrlemiex 6483* | Lemma for tfrlemi1 6484. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) | ||
| Theorem | tfrlemi1 6484* |
We can define an acceptable function on any ordinal.
As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) | ||
| Theorem | tfrlemi14d 6485* | The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → dom recs(𝐹) = On) | ||
| Theorem | tfrexlem 6486* | The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑉) → (recs(𝐹)‘𝐶) ∈ V) | ||
| Theorem | tfri1d 6487* |
Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → 𝐹 Fn On) | ||
| Theorem | tfri2d 6488* | Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6517). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
| Theorem | tfr1onlem3ag 6489* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6461 but for tfr1on 6502 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) | ||
| Theorem | tfr1onlem3 6490* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6463 but for tfr1on 6502 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} | ||
| Theorem | tfr1onlemssrecs 6491* | Lemma for tfr1on 6502. The union of functions acceptable for tfr1on 6502 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → Ord 𝑋) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) | ||
| Theorem | tfr1onlemsucfn 6492* | We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6502. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑧 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) | ||
| Theorem | tfr1onlemsucaccv 6493* | Lemma for tfr1on 6502. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑧 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | ||
| Theorem | tfr1onlembacc 6494* | Lemma for tfr1on 6502. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
| Theorem | tfr1onlembxssdm 6495* | Lemma for tfr1on 6502. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐷 ⊆ dom ∪ 𝐵) | ||
| Theorem | tfr1onlembfn 6496* | Lemma for tfr1on 6502. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝐷) | ||
| Theorem | tfr1onlembex 6497* | Lemma for tfr1on 6502. The set 𝐵 exists. (Contributed by Jim Kingdon, 14-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | tfr1onlemubacc 6498* | Lemma for tfr1on 6502. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) | ||
| Theorem | tfr1onlemex 6499* | Lemma for tfr1on 6502. (Contributed by Jim Kingdon, 16-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) | ||
| Theorem | tfr1onlemaccex 6500* |
We can define an acceptable function on any element of 𝑋.
As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 16-Mar-2022.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |