| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1vgrex | GIF version | ||
| Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vtx 15809 | . . . . . 6 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
| 2 | 1 | funmpt2 5356 | . . . . 5 ⊢ Fun Vtx |
| 3 | funrel 5334 | . . . . 5 ⊢ (Fun Vtx → Rel Vtx) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel Vtx |
| 5 | relelfvdm 5658 | . . . 4 ⊢ ((Rel Vtx ∧ 𝑁 ∈ (Vtx‘𝐺)) → 𝐺 ∈ dom Vtx) | |
| 6 | 4, 5 | mpan 424 | . . 3 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ dom Vtx) |
| 7 | 1vgrex.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 6, 7 | eleq2s 2324 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ dom Vtx) |
| 9 | 8 | elexd 2813 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ifcif 3602 × cxp 4716 dom cdm 4718 Rel wrel 4723 Fun wfun 5311 ‘cfv 5317 1st c1st 6282 Basecbs 13027 Vtxcvtx 15807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-vtx 15809 |
| This theorem is referenced by: upgr1edc 15915 |
| Copyright terms: Public domain | W3C validator |