| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1vgrex | GIF version | ||
| Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vtx 15555 | . . . . . 6 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
| 2 | 1 | funmpt2 5309 | . . . . 5 ⊢ Fun Vtx |
| 3 | funrel 5287 | . . . . 5 ⊢ (Fun Vtx → Rel Vtx) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel Vtx |
| 5 | relelfvdm 5607 | . . . 4 ⊢ ((Rel Vtx ∧ 𝑁 ∈ (Vtx‘𝐺)) → 𝐺 ∈ dom Vtx) | |
| 6 | 4, 5 | mpan 424 | . . 3 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ dom Vtx) |
| 7 | 1vgrex.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 6, 7 | eleq2s 2299 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ dom Vtx) |
| 9 | 8 | elexd 2784 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ifcif 3570 × cxp 4672 dom cdm 4674 Rel wrel 4679 Fun wfun 5264 ‘cfv 5270 1st c1st 6223 Basecbs 12774 Vtxcvtx 15553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-vtx 15555 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |