| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1vgrex | GIF version | ||
| Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1vgrex.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 1vgrex | ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vtx 15688 | . . . . . 6 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
| 2 | 1 | funmpt2 5319 | . . . . 5 ⊢ Fun Vtx |
| 3 | funrel 5297 | . . . . 5 ⊢ (Fun Vtx → Rel Vtx) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ Rel Vtx |
| 5 | relelfvdm 5621 | . . . 4 ⊢ ((Rel Vtx ∧ 𝑁 ∈ (Vtx‘𝐺)) → 𝐺 ∈ dom Vtx) | |
| 6 | 4, 5 | mpan 424 | . . 3 ⊢ (𝑁 ∈ (Vtx‘𝐺) → 𝐺 ∈ dom Vtx) |
| 7 | 1vgrex.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 6, 7 | eleq2s 2301 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ dom Vtx) |
| 9 | 8 | elexd 2787 | 1 ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ifcif 3575 × cxp 4681 dom cdm 4683 Rel wrel 4688 Fun wfun 5274 ‘cfv 5280 1st c1st 6237 Basecbs 12907 Vtxcvtx 15686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-vtx 15688 |
| This theorem is referenced by: upgr1edc 15789 |
| Copyright terms: Public domain | W3C validator |