| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xneg | GIF version | ||
| Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| df-xneg | ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cxne 9861 | . 2 class -𝑒𝐴 |
| 3 | cpnf 8075 | . . . 4 class +∞ | |
| 4 | 1, 3 | wceq 1364 | . . 3 wff 𝐴 = +∞ |
| 5 | cmnf 8076 | . . 3 class -∞ | |
| 6 | 1, 5 | wceq 1364 | . . . 4 wff 𝐴 = -∞ |
| 7 | 1 | cneg 8215 | . . . 4 class -𝐴 |
| 8 | 6, 3, 7 | cif 3562 | . . 3 class if(𝐴 = -∞, +∞, -𝐴) |
| 9 | 4, 5, 8 | cif 3562 | . 2 class if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| 10 | 2, 9 | wceq 1364 | 1 wff -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| Colors of variables: wff set class |
| This definition is referenced by: xnegeq 9919 xnegpnf 9920 xnegmnf 9921 rexneg 9922 |
| Copyright terms: Public domain | W3C validator |