| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-xneg | GIF version | ||
| Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.) | 
| Ref | Expression | 
|---|---|
| df-xneg | ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cxne 9844 | . 2 class -𝑒𝐴 | 
| 3 | cpnf 8058 | . . . 4 class +∞ | |
| 4 | 1, 3 | wceq 1364 | . . 3 wff 𝐴 = +∞ | 
| 5 | cmnf 8059 | . . 3 class -∞ | |
| 6 | 1, 5 | wceq 1364 | . . . 4 wff 𝐴 = -∞ | 
| 7 | 1 | cneg 8198 | . . . 4 class -𝐴 | 
| 8 | 6, 3, 7 | cif 3561 | . . 3 class if(𝐴 = -∞, +∞, -𝐴) | 
| 9 | 4, 5, 8 | cif 3561 | . 2 class if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | 
| 10 | 2, 9 | wceq 1364 | 1 wff -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: xnegeq 9902 xnegpnf 9903 xnegmnf 9904 rexneg 9905 | 
| Copyright terms: Public domain | W3C validator |