ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf GIF version

Theorem xnegpnf 9922
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9866 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2196 . . 3 +∞ = +∞
32iftruei 3568 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2217 1 -𝑒+∞ = -∞
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ifcif 3562  +∞cpnf 8077  -∞cmnf 8078  -cneg 8217  -𝑒cxne 9863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3563  df-xneg 9866
This theorem is referenced by:  xnegcl  9926  xnegneg  9927  xltnegi  9929  xnegid  9953  xnegdi  9962  xaddass2  9964  xsubge0  9975  xposdif  9976  xlesubadd  9977  xblss2ps  14748  xblss2  14749
  Copyright terms: Public domain W3C validator