ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf GIF version

Theorem xnegpnf 9985
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9929 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2207 . . 3 +∞ = +∞
32iftruei 3585 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2228 1 -𝑒+∞ = -∞
Colors of variables: wff set class
Syntax hints:   = wceq 1373  ifcif 3579  +∞cpnf 8139  -∞cmnf 8140  -cneg 8279  -𝑒cxne 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-if 3580  df-xneg 9929
This theorem is referenced by:  xnegcl  9989  xnegneg  9990  xltnegi  9992  xnegid  10016  xnegdi  10025  xaddass2  10027  xsubge0  10038  xposdif  10039  xlesubadd  10040  xblss2ps  14991  xblss2  14992
  Copyright terms: Public domain W3C validator