![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnegpnf | GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9841 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2193 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 3564 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2214 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ifcif 3558 +∞cpnf 8053 -∞cmnf 8054 -cneg 8193 -𝑒cxne 9838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3559 df-xneg 9841 |
This theorem is referenced by: xnegcl 9901 xnegneg 9902 xltnegi 9904 xnegid 9928 xnegdi 9937 xaddass2 9939 xsubge0 9950 xposdif 9951 xlesubadd 9952 xblss2ps 14583 xblss2 14584 |
Copyright terms: Public domain | W3C validator |