| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegpnf | GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9893 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2204 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 3576 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2225 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ifcif 3570 +∞cpnf 8103 -∞cmnf 8104 -cneg 8243 -𝑒cxne 9890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 df-xneg 9893 |
| This theorem is referenced by: xnegcl 9953 xnegneg 9954 xltnegi 9956 xnegid 9980 xnegdi 9989 xaddass2 9991 xsubge0 10002 xposdif 10003 xlesubadd 10004 xblss2ps 14847 xblss2 14848 |
| Copyright terms: Public domain | W3C validator |