ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf GIF version

Theorem xnegpnf 9903
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9847 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2196 . . 3 +∞ = +∞
32iftruei 3567 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2217 1 -𝑒+∞ = -∞
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ifcif 3561  +∞cpnf 8058  -∞cmnf 8059  -cneg 8198  -𝑒cxne 9844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3562  df-xneg 9847
This theorem is referenced by:  xnegcl  9907  xnegneg  9908  xltnegi  9910  xnegid  9934  xnegdi  9943  xaddass2  9945  xsubge0  9956  xposdif  9957  xlesubadd  9958  xblss2ps  14640  xblss2  14641
  Copyright terms: Public domain W3C validator