| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegpnf | GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9964 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2229 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 3608 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2250 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ifcif 3602 +∞cpnf 8174 -∞cmnf 8175 -cneg 8314 -𝑒cxne 9961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 df-xneg 9964 |
| This theorem is referenced by: xnegcl 10024 xnegneg 10025 xltnegi 10027 xnegid 10051 xnegdi 10060 xaddass2 10062 xsubge0 10073 xposdif 10074 xlesubadd 10075 xblss2ps 15072 xblss2 15073 |
| Copyright terms: Public domain | W3C validator |