| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegpnf | GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9847 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2196 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 3567 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2217 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ifcif 3561 +∞cpnf 8058 -∞cmnf 8059 -cneg 8198 -𝑒cxne 9844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 df-xneg 9847 |
| This theorem is referenced by: xnegcl 9907 xnegneg 9908 xltnegi 9910 xnegid 9934 xnegdi 9943 xaddass2 9945 xsubge0 9956 xposdif 9957 xlesubadd 9958 xblss2ps 14640 xblss2 14641 |
| Copyright terms: Public domain | W3C validator |