| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegpnf | GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9929 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2207 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 3585 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2228 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ifcif 3579 +∞cpnf 8139 -∞cmnf 8140 -cneg 8279 -𝑒cxne 9926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 df-xneg 9929 |
| This theorem is referenced by: xnegcl 9989 xnegneg 9990 xltnegi 9992 xnegid 10016 xnegdi 10025 xaddass2 10027 xsubge0 10038 xposdif 10039 xlesubadd 10040 xblss2ps 14991 xblss2 14992 |
| Copyright terms: Public domain | W3C validator |