Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegpnf | GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9708 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2165 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 3526 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2186 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ifcif 3520 +∞cpnf 7930 -∞cmnf 7931 -cneg 8070 -𝑒cxne 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 df-xneg 9708 |
This theorem is referenced by: xnegcl 9768 xnegneg 9769 xltnegi 9771 xnegid 9795 xnegdi 9804 xaddass2 9806 xsubge0 9817 xposdif 9818 xlesubadd 9819 xblss2ps 13054 xblss2 13055 |
Copyright terms: Public domain | W3C validator |