ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf GIF version

Theorem xnegpnf 9950
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9894 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2205 . . 3 +∞ = +∞
32iftruei 3577 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2226 1 -𝑒+∞ = -∞
Colors of variables: wff set class
Syntax hints:   = wceq 1373  ifcif 3571  +∞cpnf 8104  -∞cmnf 8105  -cneg 8244  -𝑒cxne 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-if 3572  df-xneg 9894
This theorem is referenced by:  xnegcl  9954  xnegneg  9955  xltnegi  9957  xnegid  9981  xnegdi  9990  xaddass2  9992  xsubge0  10003  xposdif  10004  xlesubadd  10005  xblss2ps  14876  xblss2  14877
  Copyright terms: Public domain W3C validator