ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf GIF version

Theorem xnegpnf 9897
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9841 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2193 . . 3 +∞ = +∞
32iftruei 3564 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2214 1 -𝑒+∞ = -∞
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ifcif 3558  +∞cpnf 8053  -∞cmnf 8054  -cneg 8193  -𝑒cxne 9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-if 3559  df-xneg 9841
This theorem is referenced by:  xnegcl  9901  xnegneg  9902  xltnegi  9904  xnegid  9928  xnegdi  9937  xaddass2  9939  xsubge0  9950  xposdif  9951  xlesubadd  9952  xblss2ps  14583  xblss2  14584
  Copyright terms: Public domain W3C validator