![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnegeq | GIF version |
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2184 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
2 | eqeq1 2184 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
3 | negeq 8152 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
4 | 2, 3 | ifbieq2d 3560 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
5 | 1, 4 | ifbieq2d 3560 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
6 | df-xneg 9774 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
7 | df-xneg 9774 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
8 | 5, 6, 7 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ifcif 3536 +∞cpnf 7991 -∞cmnf 7992 -cneg 8131 -𝑒cxne 9771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-if 3537 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 df-neg 8133 df-xneg 9774 |
This theorem is referenced by: xnegcl 9834 xnegneg 9835 xneg11 9836 xltnegi 9837 xnegid 9861 xnegdi 9870 xsubge0 9883 xposdif 9884 xlesubadd 9885 xrnegiso 11272 infxrnegsupex 11273 xrminmax 11275 xrminrecl 11283 xrminadd 11285 xblss2ps 13943 xblss2 13944 |
Copyright terms: Public domain | W3C validator |