| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegeq | GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
| 2 | eqeq1 2203 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
| 3 | negeq 8236 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 4 | 2, 3 | ifbieq2d 3586 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
| 5 | 1, 4 | ifbieq2d 3586 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
| 6 | df-xneg 9864 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 7 | df-xneg 9864 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
| 8 | 5, 6, 7 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ifcif 3562 +∞cpnf 8075 -∞cmnf 8076 -cneg 8215 -𝑒cxne 9861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-if 3563 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 df-xneg 9864 |
| This theorem is referenced by: xnegcl 9924 xnegneg 9925 xneg11 9926 xltnegi 9927 xnegid 9951 xnegdi 9960 xsubge0 9973 xposdif 9974 xlesubadd 9975 xrnegiso 11444 infxrnegsupex 11445 xrminmax 11447 xrminrecl 11455 xrminadd 11457 xblss2ps 14724 xblss2 14725 |
| Copyright terms: Public domain | W3C validator |