ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegeq GIF version

Theorem xnegeq 9863
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegeq (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)

Proof of Theorem xnegeq
StepHypRef Expression
1 eqeq1 2196 . . 3 (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞))
2 eqeq1 2196 . . . 4 (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞))
3 negeq 8185 . . . 4 (𝐴 = 𝐵 → -𝐴 = -𝐵)
42, 3ifbieq2d 3573 . . 3 (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵))
51, 4ifbieq2d 3573 . 2 (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)))
6 df-xneg 9808 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
7 df-xneg 9808 . 2 -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))
85, 6, 73eqtr4g 2247 1 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ifcif 3549  +∞cpnf 8024  -∞cmnf 8025  -cneg 8164  -𝑒cxne 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-if 3550  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-iota 5199  df-fv 5246  df-ov 5903  df-neg 8166  df-xneg 9808
This theorem is referenced by:  xnegcl  9868  xnegneg  9869  xneg11  9870  xltnegi  9871  xnegid  9895  xnegdi  9904  xsubge0  9917  xposdif  9918  xlesubadd  9919  xrnegiso  11311  infxrnegsupex  11312  xrminmax  11314  xrminrecl  11322  xrminadd  11324  xblss2ps  14389  xblss2  14390
  Copyright terms: Public domain W3C validator