ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegeq GIF version

Theorem xnegeq 9984
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegeq (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)

Proof of Theorem xnegeq
StepHypRef Expression
1 eqeq1 2214 . . 3 (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞))
2 eqeq1 2214 . . . 4 (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞))
3 negeq 8300 . . . 4 (𝐴 = 𝐵 → -𝐴 = -𝐵)
42, 3ifbieq2d 3604 . . 3 (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵))
51, 4ifbieq2d 3604 . 2 (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)))
6 df-xneg 9929 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
7 df-xneg 9929 . 2 -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))
85, 6, 73eqtr4g 2265 1 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  ifcif 3579  +∞cpnf 8139  -∞cmnf 8140  -cneg 8279  -𝑒cxne 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-if 3580  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-neg 8281  df-xneg 9929
This theorem is referenced by:  xnegcl  9989  xnegneg  9990  xneg11  9991  xltnegi  9992  xnegid  10016  xnegdi  10025  xsubge0  10038  xposdif  10039  xlesubadd  10040  xrnegiso  11688  infxrnegsupex  11689  xrminmax  11691  xrminrecl  11699  xrminadd  11701  xblss2ps  14991  xblss2  14992
  Copyright terms: Public domain W3C validator