![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnegeq | GIF version |
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2196 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
2 | eqeq1 2196 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
3 | negeq 8185 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
4 | 2, 3 | ifbieq2d 3573 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
5 | 1, 4 | ifbieq2d 3573 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
6 | df-xneg 9808 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
7 | df-xneg 9808 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
8 | 5, 6, 7 | 3eqtr4g 2247 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ifcif 3549 +∞cpnf 8024 -∞cmnf 8025 -cneg 8164 -𝑒cxne 9805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-rab 2477 df-v 2754 df-un 3148 df-if 3550 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-iota 5199 df-fv 5246 df-ov 5903 df-neg 8166 df-xneg 9808 |
This theorem is referenced by: xnegcl 9868 xnegneg 9869 xneg11 9870 xltnegi 9871 xnegid 9895 xnegdi 9904 xsubge0 9917 xposdif 9918 xlesubadd 9919 xrnegiso 11311 infxrnegsupex 11312 xrminmax 11314 xrminrecl 11322 xrminadd 11324 xblss2ps 14389 xblss2 14390 |
Copyright terms: Public domain | W3C validator |