![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnegeq | GIF version |
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
2 | eqeq1 2200 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
3 | negeq 8212 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
4 | 2, 3 | ifbieq2d 3581 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
5 | 1, 4 | ifbieq2d 3581 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
6 | df-xneg 9838 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
7 | df-xneg 9838 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
8 | 5, 6, 7 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ifcif 3557 +∞cpnf 8051 -∞cmnf 8052 -cneg 8191 -𝑒cxne 9835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-if 3558 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-neg 8193 df-xneg 9838 |
This theorem is referenced by: xnegcl 9898 xnegneg 9899 xneg11 9900 xltnegi 9901 xnegid 9925 xnegdi 9934 xsubge0 9947 xposdif 9948 xlesubadd 9949 xrnegiso 11405 infxrnegsupex 11406 xrminmax 11408 xrminrecl 11416 xrminadd 11418 xblss2ps 14572 xblss2 14573 |
Copyright terms: Public domain | W3C validator |