ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegeq GIF version

Theorem xnegeq 9893
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegeq (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)

Proof of Theorem xnegeq
StepHypRef Expression
1 eqeq1 2200 . . 3 (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞))
2 eqeq1 2200 . . . 4 (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞))
3 negeq 8212 . . . 4 (𝐴 = 𝐵 → -𝐴 = -𝐵)
42, 3ifbieq2d 3581 . . 3 (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵))
51, 4ifbieq2d 3581 . 2 (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)))
6 df-xneg 9838 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
7 df-xneg 9838 . 2 -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))
85, 6, 73eqtr4g 2251 1 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  ifcif 3557  +∞cpnf 8051  -∞cmnf 8052  -cneg 8191  -𝑒cxne 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-if 3558  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-neg 8193  df-xneg 9838
This theorem is referenced by:  xnegcl  9898  xnegneg  9899  xneg11  9900  xltnegi  9901  xnegid  9925  xnegdi  9934  xsubge0  9947  xposdif  9948  xlesubadd  9949  xrnegiso  11405  infxrnegsupex  11406  xrminmax  11408  xrminrecl  11416  xrminadd  11418  xblss2ps  14572  xblss2  14573
  Copyright terms: Public domain W3C validator