HomeHome Intuitionistic Logic Explorer
Theorem List (p. 98 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9701-9800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlt2mul2divd 9701 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))
 
Theoremnnledivrp 9702 Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
 
Theoremnn0ledivnn 9703 Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
 
Theoremaddlelt 9704 If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.)
((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))
 
4.5.2  Infinity and the extended real number system (cont.)
 
Syntaxcxne 9705 Extend class notation to include the negative of an extended real.
class -𝑒𝐴
 
Syntaxcxad 9706 Extend class notation to include addition of extended reals.
class +𝑒
 
Syntaxcxmu 9707 Extend class notation to include multiplication of extended reals.
class ·e
 
Definitiondf-xneg 9708 Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.)
-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
 
Definitiondf-xadd 9709* Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
+𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
 
Definitiondf-xmul 9710* Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
 
Theoremltxr 9711 The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
 
Theoremelxr 9712 Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
 
Theoremxrnemnf 9713 An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
 
Theoremxrnepnf 9714 An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞))
 
Theoremxrltnr 9715 The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
 
Theoremltpnf 9716 Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ → 𝐴 < +∞)
 
Theoremltpnfd 9717 Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 < +∞)
 
Theorem0ltpnf 9718 Zero is less than plus infinity (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
0 < +∞
 
Theoremmnflt 9719 Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ → -∞ < 𝐴)
 
Theoremmnflt0 9720 Minus infinity is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-∞ < 0
 
Theoremmnfltpnf 9721 Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
-∞ < +∞
 
Theoremmnfltxr 9722 Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)
 
Theorempnfnlt 9723 No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
(𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
 
Theoremnltmnf 9724 No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
(𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
 
Theorempnfge 9725 Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
(𝐴 ∈ ℝ*𝐴 ≤ +∞)
 
Theorem0lepnf 9726 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ≤ +∞
 
Theoremnn0pnfge0 9727 If a number is a nonnegative integer or positive infinity, it is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
((𝑁 ∈ ℕ0𝑁 = +∞) → 0 ≤ 𝑁)
 
Theoremmnfle 9728 Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
(𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
 
Theoremxrltnsym 9729 Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
 
Theoremxrltnsym2 9730 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
 
Theoremxrlttr 9731 Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremxrltso 9732 'Less than' is a weakly linear ordering on the extended reals. (Contributed by NM, 15-Oct-2005.)
< Or ℝ*
 
Theoremxrlttri3 9733 Extended real version of lttri3 7978. (Contributed by NM, 9-Feb-2006.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremxrltle 9734 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
 
Theoremxrltled 9735 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 9734. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremxrleid 9736 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.)
(𝐴 ∈ ℝ*𝐴𝐴)
 
Theoremxrleidd 9737 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 9736. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)       (𝜑𝐴𝐴)
 
Theoremxnn0dcle 9738 Decidability of for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → DECID 𝐴𝐵)
 
Theoremxnn0letri 9739 Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴𝐵𝐵𝐴))
 
Theoremxrletri3 9740 Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremxrletrid 9741 Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐴)       (𝜑𝐴 = 𝐵)
 
Theoremxrlelttr 9742 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremxrltletr 9743 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
 
Theoremxrletr 9744 Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremxrlttrd 9745 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremxrlelttrd 9746 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremxrltletrd 9747 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremxrletrd 9748 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremxrltne 9749 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
 
Theoremnltpnft 9750 An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
(𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
 
Theoremnpnflt 9751 An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
(𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
 
Theoremxgepnf 9752 An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.)
(𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
 
Theoremngtmnft 9753 An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
(𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
 
Theoremnmnfgt 9754 An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
(𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))
 
Theoremxrrebnd 9755 An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
(𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
 
Theoremxrre 9756 A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
 
Theoremxrre2 9757 An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
 
Theoremxrre3 9758 A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐵𝐴𝐴 < +∞)) → 𝐴 ∈ ℝ)
 
Theoremge0gtmnf 9759 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
 
Theoremge0nemnf 9760 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
 
Theoremxrrege0 9761 A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
 
Theoremz2ge 9762* There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
 
Theoremxnegeq 9763 Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
(𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
 
Theoremxnegpnf 9764 Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
-𝑒+∞ = -∞
 
Theoremxnegmnf 9765 Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
-𝑒-∞ = +∞
 
Theoremrexneg 9766 Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
 
Theoremxneg0 9767 The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.)
-𝑒0 = 0
 
Theoremxnegcl 9768 Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
 
Theoremxnegneg 9769 Extended real version of negneg 8148. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
 
Theoremxneg11 9770 Extended real version of neg11 8149. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵𝐴 = 𝐵))
 
Theoremxltnegi 9771 Forward direction of xltneg 9772. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)
 
Theoremxltneg 9772 Extended real version of ltneg 8360. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴))
 
Theoremxleneg 9773 Extended real version of leneg 8363. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
 
Theoremxlt0neg1 9774 Extended real version of lt0neg1 8366. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
 
Theoremxlt0neg2 9775 Extended real version of lt0neg2 8367. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0))
 
Theoremxle0neg1 9776 Extended real version of le0neg1 8368. (Contributed by Mario Carneiro, 9-Sep-2015.)
(𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴))
 
Theoremxle0neg2 9777 Extended real version of le0neg2 8369. (Contributed by Mario Carneiro, 9-Sep-2015.)
(𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ -𝑒𝐴 ≤ 0))
 
Theoremxrpnfdc 9778 An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ*DECID 𝐴 = +∞)
 
Theoremxrmnfdc 9779 An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ*DECID 𝐴 = -∞)
 
Theoremxaddf 9780 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
+𝑒 :(ℝ* × ℝ*)⟶ℝ*
 
Theoremxaddval 9781 Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
 
Theoremxaddpnf1 9782 Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
 
Theoremxaddpnf2 9783 Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
 
Theoremxaddmnf1 9784 Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
 
Theoremxaddmnf2 9785 Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
 
Theorempnfaddmnf 9786 Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
(+∞ +𝑒 -∞) = 0
 
Theoremmnfaddpnf 9787 Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
(-∞ +𝑒 +∞) = 0
 
Theoremrexadd 9788 The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
 
Theoremrexsub 9789 Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴𝐵))
 
Theoremrexaddd 9790 The extended real addition operation when both arguments are real. Deduction version of rexadd 9788. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
 
Theoremxnegcld 9791 Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → -𝑒𝐴 ∈ ℝ*)
 
Theoremxrex 9792 The set of extended reals exists. (Contributed by NM, 24-Dec-2006.)
* ∈ V
 
Theoremxaddnemnf 9793 Closure of extended real addition in the subset * / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
 
Theoremxaddnepnf 9794 Closure of extended real addition in the subset * / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
 
Theoremxnegid 9795 Extended real version of negid 8145. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)
 
Theoremxaddcl 9796 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
 
Theoremxaddcom 9797 The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
 
Theoremxaddid1 9798 Extended real version of addid1 8036. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
 
Theoremxaddid2 9799 Extended real version of addid2 8037. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴)
 
Theoremxaddid1d 9800 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → (𝐴 +𝑒 0) = 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >