| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegmnf | GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9929 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 8163 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 3590 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2207 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 3585 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2232 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ≠ wne 2378 ifcif 3579 +∞cpnf 8139 -∞cmnf 8140 -cneg 8279 -𝑒cxne 9926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-un 4498 ax-cnex 8051 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xneg 9929 |
| This theorem is referenced by: xnegcl 9989 xnegneg 9990 xltnegi 9992 xnegid 10016 xnegdi 10025 xsubge0 10038 xposdif 10039 |
| Copyright terms: Public domain | W3C validator |