![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnegmnf | GIF version |
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegmnf | ⊢ -𝑒-∞ = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9775 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
2 | mnfnepnf 8016 | . . 3 ⊢ -∞ ≠ +∞ | |
3 | ifnefalse 3547 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
5 | eqid 2177 | . . 3 ⊢ -∞ = -∞ | |
6 | 5 | iftruei 3542 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
7 | 1, 4, 6 | 3eqtri 2202 | 1 ⊢ -𝑒-∞ = +∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ≠ wne 2347 ifcif 3536 +∞cpnf 7992 -∞cmnf 7993 -cneg 8132 -𝑒cxne 9772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-un 4435 ax-cnex 7905 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-pnf 7997 df-mnf 7998 df-xr 7999 df-xneg 9775 |
This theorem is referenced by: xnegcl 9835 xnegneg 9836 xltnegi 9838 xnegid 9862 xnegdi 9871 xsubge0 9884 xposdif 9885 |
Copyright terms: Public domain | W3C validator |