Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegmnf | GIF version |
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegmnf | ⊢ -𝑒-∞ = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9708 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
2 | mnfnepnf 7954 | . . 3 ⊢ -∞ ≠ +∞ | |
3 | ifnefalse 3531 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
5 | eqid 2165 | . . 3 ⊢ -∞ = -∞ | |
6 | 5 | iftruei 3526 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
7 | 1, 4, 6 | 3eqtri 2190 | 1 ⊢ -𝑒-∞ = +∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ≠ wne 2336 ifcif 3520 +∞cpnf 7930 -∞cmnf 7931 -cneg 8070 -𝑒cxne 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xneg 9708 |
This theorem is referenced by: xnegcl 9768 xnegneg 9769 xltnegi 9771 xnegid 9795 xnegdi 9804 xsubge0 9817 xposdif 9818 |
Copyright terms: Public domain | W3C validator |