Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegmnf | GIF version |
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegmnf | ⊢ -𝑒-∞ = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9661 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
2 | mnfnepnf 7916 | . . 3 ⊢ -∞ ≠ +∞ | |
3 | ifnefalse 3516 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
5 | eqid 2157 | . . 3 ⊢ -∞ = -∞ | |
6 | 5 | iftruei 3511 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
7 | 1, 4, 6 | 3eqtri 2182 | 1 ⊢ -𝑒-∞ = +∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ≠ wne 2327 ifcif 3505 +∞cpnf 7892 -∞cmnf 7893 -cneg 8030 -𝑒cxne 9658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-un 4392 ax-cnex 7806 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-pnf 7897 df-mnf 7898 df-xr 7899 df-xneg 9661 |
This theorem is referenced by: xnegcl 9718 xnegneg 9719 xltnegi 9721 xnegid 9745 xnegdi 9754 xsubge0 9767 xposdif 9768 |
Copyright terms: Public domain | W3C validator |