ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegmnf GIF version

Theorem xnegmnf 9715
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegmnf -𝑒-∞ = +∞

Proof of Theorem xnegmnf
StepHypRef Expression
1 df-xneg 9661 . 2 -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞))
2 mnfnepnf 7916 . . 3 -∞ ≠ +∞
3 ifnefalse 3516 . . 3 (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞))
42, 3ax-mp 5 . 2 if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)
5 eqid 2157 . . 3 -∞ = -∞
65iftruei 3511 . 2 if(-∞ = -∞, +∞, --∞) = +∞
71, 4, 63eqtri 2182 1 -𝑒-∞ = +∞
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wne 2327  ifcif 3505  +∞cpnf 7892  -∞cmnf 7893  -cneg 8030  -𝑒cxne 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-un 4392  ax-cnex 7806
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-pnf 7897  df-mnf 7898  df-xr 7899  df-xneg 9661
This theorem is referenced by:  xnegcl  9718  xnegneg  9719  xltnegi  9721  xnegid  9745  xnegdi  9754  xsubge0  9767  xposdif  9768
  Copyright terms: Public domain W3C validator