| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegmnf | GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9964 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 8198 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 3613 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2229 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 3608 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2254 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ≠ wne 2400 ifcif 3602 +∞cpnf 8174 -∞cmnf 8175 -cneg 8314 -𝑒cxne 9961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-xneg 9964 |
| This theorem is referenced by: xnegcl 10024 xnegneg 10025 xltnegi 10027 xnegid 10051 xnegdi 10060 xsubge0 10073 xposdif 10074 |
| Copyright terms: Public domain | W3C validator |