ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexneg GIF version

Theorem rexneg 9922
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 9864 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 renepnf 8091 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
3 ifnefalse 3573 . . . 4 (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
42, 3syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
5 renemnf 8092 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
6 ifnefalse 3573 . . . 4 (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
75, 6syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
84, 7eqtrd 2229 . 2 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴)
91, 8eqtrid 2241 1 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wne 2367  ifcif 3562  cr 7895  +∞cpnf 8075  -∞cmnf 8076  -cneg 8215  -𝑒cxne 9861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-pnf 8080  df-mnf 8081  df-xneg 9864
This theorem is referenced by:  xneg0  9923  xnegcl  9924  xnegneg  9925  xltnegi  9927  rexsub  9945  xnegid  9951  xnegdi  9960  xpncan  9963  xnpcan  9964  xposdif  9974  xrmaxaddlem  11442  xrminrecl  11455  xrminrpcl  11456
  Copyright terms: Public domain W3C validator