ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexneg GIF version

Theorem rexneg 9905
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 9847 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 renepnf 8074 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
3 ifnefalse 3572 . . . 4 (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
42, 3syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
5 renemnf 8075 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
6 ifnefalse 3572 . . . 4 (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
75, 6syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
84, 7eqtrd 2229 . 2 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴)
91, 8eqtrid 2241 1 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wne 2367  ifcif 3561  cr 7878  +∞cpnf 8058  -∞cmnf 8059  -cneg 8198  -𝑒cxne 9844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-pnf 8063  df-mnf 8064  df-xneg 9847
This theorem is referenced by:  xneg0  9906  xnegcl  9907  xnegneg  9908  xltnegi  9910  rexsub  9928  xnegid  9934  xnegdi  9943  xpncan  9946  xnpcan  9947  xposdif  9957  xrmaxaddlem  11425  xrminrecl  11438  xrminrpcl  11439
  Copyright terms: Public domain W3C validator