| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexneg | GIF version | ||
| Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| rexneg | ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xneg 9847 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | renepnf 8074 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | ifnefalse 3572 | . . . 4 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) | 
| 5 | renemnf 8075 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 6 | ifnefalse 3572 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) | 
| 8 | 4, 7 | eqtrd 2229 | . 2 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴) | 
| 9 | 1, 8 | eqtrid 2241 | 1 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ifcif 3561 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 -cneg 8198 -𝑒cxne 9844 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-mnf 8064 df-xneg 9847 | 
| This theorem is referenced by: xneg0 9906 xnegcl 9907 xnegneg 9908 xltnegi 9910 rexsub 9928 xnegid 9934 xnegdi 9943 xpncan 9946 xnpcan 9947 xposdif 9957 xrmaxaddlem 11425 xrminrecl 11438 xrminrpcl 11439 | 
| Copyright terms: Public domain | W3C validator |