ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexneg GIF version

Theorem rexneg 9899
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 9841 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 renepnf 8069 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
3 ifnefalse 3569 . . . 4 (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
42, 3syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
5 renemnf 8070 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
6 ifnefalse 3569 . . . 4 (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
75, 6syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
84, 7eqtrd 2226 . 2 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴)
91, 8eqtrid 2238 1 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wne 2364  ifcif 3558  cr 7873  +∞cpnf 8053  -∞cmnf 8054  -cneg 8193  -𝑒cxne 9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-pnf 8058  df-mnf 8059  df-xneg 9841
This theorem is referenced by:  xneg0  9900  xnegcl  9901  xnegneg  9902  xltnegi  9904  rexsub  9922  xnegid  9928  xnegdi  9937  xpncan  9940  xnpcan  9941  xposdif  9951  xrmaxaddlem  11406  xrminrecl  11419  xrminrpcl  11420
  Copyright terms: Public domain W3C validator