ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexneg GIF version

Theorem rexneg 9787
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 9729 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 renepnf 7967 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
3 ifnefalse 3537 . . . 4 (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
42, 3syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
5 renemnf 7968 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
6 ifnefalse 3537 . . . 4 (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
75, 6syl 14 . . 3 (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
84, 7eqtrd 2203 . 2 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴)
91, 8eqtrid 2215 1 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wne 2340  ifcif 3526  cr 7773  +∞cpnf 7951  -∞cmnf 7952  -cneg 8091  -𝑒cxne 9726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-mnf 7957  df-xneg 9729
This theorem is referenced by:  xneg0  9788  xnegcl  9789  xnegneg  9790  xltnegi  9792  rexsub  9810  xnegid  9816  xnegdi  9825  xpncan  9828  xnpcan  9829  xposdif  9839  xrmaxaddlem  11223  xrminrecl  11236  xrminrpcl  11237
  Copyright terms: Public domain W3C validator