![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexneg | GIF version |
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
rexneg | ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9838 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | renepnf 8067 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | ifnefalse 3568 | . . . 4 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) |
5 | renemnf 8068 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
6 | ifnefalse 3568 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) |
8 | 4, 7 | eqtrd 2226 | . 2 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴) |
9 | 1, 8 | eqtrid 2238 | 1 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ifcif 3557 ℝcr 7871 +∞cpnf 8051 -∞cmnf 8052 -cneg 8191 -𝑒cxne 9835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-pnf 8056 df-mnf 8057 df-xneg 9838 |
This theorem is referenced by: xneg0 9897 xnegcl 9898 xnegneg 9899 xltnegi 9901 rexsub 9919 xnegid 9925 xnegdi 9934 xpncan 9937 xnpcan 9938 xposdif 9948 xrmaxaddlem 11403 xrminrecl 11416 xrminrpcl 11417 |
Copyright terms: Public domain | W3C validator |