| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-xnn0 | GIF version | ||
| Description: Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 8065. If we assumed excluded middle, this would be essentially the same as ℕ∞ as defined at df-nninf 7186 but in its absence the relationship between the two is more complicated. (Contributed by AV, 10-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| df-xnn0 | ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cxnn0 9312 | . 2 class ℕ0* | |
| 2 | cn0 9249 | . . 3 class ℕ0 | |
| 3 | cpnf 8058 | . . . 4 class +∞ | |
| 4 | 3 | csn 3622 | . . 3 class {+∞} | 
| 5 | 2, 4 | cun 3155 | . 2 class (ℕ0 ∪ {+∞}) | 
| 6 | 1, 5 | wceq 1364 | 1 wff ℕ0* = (ℕ0 ∪ {+∞}) | 
| Colors of variables: wff set class | 
| This definition is referenced by: elxnn0 9314 nn0ssxnn0 9315 xnn0nnen 10529 fxnn0nninf 10531 | 
| Copyright terms: Public domain | W3C validator |