| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-nninf | GIF version | ||
| Description: Define the set of nonincreasing sequences in 2o ↑𝑚 ω. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as ℕ0* as defined at df-xnn0 9441 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used ω or ℕ0, but the former allows us to take advantage of 2o = {∅, 1o} (df2o3 6583) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.) |
| Ref | Expression |
|---|---|
| df-nninf | ⊢ ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnninf 7294 | . 2 class ℕ∞ | |
| 2 | vi | . . . . . . . 8 setvar 𝑖 | |
| 3 | 2 | cv 1394 | . . . . . . 7 class 𝑖 |
| 4 | 3 | csuc 4456 | . . . . . 6 class suc 𝑖 |
| 5 | vf | . . . . . . 7 setvar 𝑓 | |
| 6 | 5 | cv 1394 | . . . . . 6 class 𝑓 |
| 7 | 4, 6 | cfv 5318 | . . . . 5 class (𝑓‘suc 𝑖) |
| 8 | 3, 6 | cfv 5318 | . . . . 5 class (𝑓‘𝑖) |
| 9 | 7, 8 | wss 3197 | . . . 4 wff (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) |
| 10 | com 4682 | . . . 4 class ω | |
| 11 | 9, 2, 10 | wral 2508 | . . 3 wff ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) |
| 12 | c2o 6562 | . . . 4 class 2o | |
| 13 | cmap 6803 | . . . 4 class ↑𝑚 | |
| 14 | 12, 10, 13 | co 6007 | . . 3 class (2o ↑𝑚 ω) |
| 15 | 11, 5, 14 | crab 2512 | . 2 class {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} |
| 16 | 1, 15 | wceq 1395 | 1 wff ℕ∞ = {𝑓 ∈ (2o ↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} |
| Colors of variables: wff set class |
| This definition is referenced by: nninfex 7296 nninff 7297 nninfninc 7298 infnninf 7299 infnninfOLD 7300 nnnninf 7301 nnnninfeq 7303 nnnninfeq2 7304 nninfwlpoimlemg 7350 0nninf 16400 nnsf 16401 peano4nninf 16402 nninfalllem1 16404 nninfself 16409 |
| Copyright terms: Public domain | W3C validator |