ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-nninf GIF version

Definition df-nninf 7229
Description: Define the set of nonincreasing sequences in 2o𝑚 ω. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as 0* as defined at df-xnn0 9366 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used ω or 0, but the former allows us to take advantage of 2o = {∅, 1o} (df2o3 6523) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
df-nninf = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
Distinct variable group:   𝑓,𝑖

Detailed syntax breakdown of Definition df-nninf
StepHypRef Expression
1 xnninf 7228 . 2 class
2 vi . . . . . . . 8 setvar 𝑖
32cv 1372 . . . . . . 7 class 𝑖
43csuc 4416 . . . . . 6 class suc 𝑖
5 vf . . . . . . 7 setvar 𝑓
65cv 1372 . . . . . 6 class 𝑓
74, 6cfv 5276 . . . . 5 class (𝑓‘suc 𝑖)
83, 6cfv 5276 . . . . 5 class (𝑓𝑖)
97, 8wss 3167 . . . 4 wff (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)
10 com 4642 . . . 4 class ω
119, 2, 10wral 2485 . . 3 wff 𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)
12 c2o 6503 . . . 4 class 2o
13 cmap 6742 . . . 4 class 𝑚
1412, 10, 13co 5951 . . 3 class (2o𝑚 ω)
1511, 5, 14crab 2489 . 2 class {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
161, 15wceq 1373 1 wff = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
Colors of variables: wff set class
This definition is referenced by:  nninfex  7230  nninff  7231  nninfninc  7232  infnninf  7233  infnninfOLD  7234  nnnninf  7235  nnnninfeq  7237  nnnninfeq2  7238  nninfwlpoimlemg  7284  0nninf  16015  nnsf  16016  peano4nninf  16017  nninfalllem1  16019  nninfself  16024
  Copyright terms: Public domain W3C validator