ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxnn0 GIF version

Theorem elxnn0 9241
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 9240 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2244 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 3277 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 8011 . . . 4 +∞ ∈ V
54elsn2 3627 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 762 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 206 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 708   = wceq 1353  wcel 2148  cun 3128  {csn 3593  +∞cpnf 7989  0cn0 9176  0*cxnn0 9239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-un 4434  ax-cnex 7902
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-pnf 7994  df-xr 7996  df-xnn0 9240
This theorem is referenced by:  xnn0xr  9244  pnf0xnn0  9246  xnn0nemnf  9250  xnn0nnn0pnf  9252  xnn0dcle  9802  xnn0letri  9803  xnn0lenn0nn0  9865  xnn0xadd0  9867
  Copyright terms: Public domain W3C validator