![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxnn0 | GIF version |
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xnn0 9307 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
2 | 1 | eleq2i 2260 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
3 | elun 3301 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
4 | pnfex 8075 | . . . 4 ⊢ +∞ ∈ V | |
5 | 4 | elsn2 3653 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 {csn 3619 +∞cpnf 8053 ℕ0cn0 9243 ℕ0*cxnn0 9306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-un 4465 ax-cnex 7965 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-xr 8060 df-xnn0 9307 |
This theorem is referenced by: xnn0xr 9311 pnf0xnn0 9313 xnn0nemnf 9317 xnn0nnn0pnf 9319 xnn0dcle 9871 xnn0letri 9872 xnn0lenn0nn0 9934 xnn0xadd0 9936 |
Copyright terms: Public domain | W3C validator |