ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxnn0 GIF version

Theorem elxnn0 9314
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 9313 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2263 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 3304 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 8080 . . . 4 +∞ ∈ V
54elsn2 3656 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 763 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 206 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709   = wceq 1364  wcel 2167  cun 3155  {csn 3622  +∞cpnf 8058  0cn0 9249  0*cxnn0 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468  ax-cnex 7970
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-pnf 8063  df-xr 8065  df-xnn0 9313
This theorem is referenced by:  xnn0xr  9317  pnf0xnn0  9319  xnn0nemnf  9323  xnn0nnn0pnf  9325  xnn0dcle  9877  xnn0letri  9878  xnn0lenn0nn0  9940  xnn0xadd0  9942
  Copyright terms: Public domain W3C validator