| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxnn0 | GIF version | ||
| Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xnn0 9330 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
| 3 | elun 3305 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
| 4 | pnfex 8097 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | 4 | elsn2 3657 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
| 6 | 5 | orbi2i 763 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3623 +∞cpnf 8075 ℕ0cn0 9266 ℕ0*cxnn0 9329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-un 4469 ax-cnex 7987 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8080 df-xr 8082 df-xnn0 9330 |
| This theorem is referenced by: xnn0xr 9334 pnf0xnn0 9336 xnn0nemnf 9340 xnn0nnn0pnf 9342 xnn0dcle 9894 xnn0letri 9895 xnn0lenn0nn0 9957 xnn0xadd0 9959 |
| Copyright terms: Public domain | W3C validator |