| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxnn0 | GIF version | ||
| Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| elxnn0 | ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xnn0 9389 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ 𝐴 ∈ (ℕ0 ∪ {+∞})) |
| 3 | elun 3318 | . 2 ⊢ (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞})) | |
| 4 | pnfex 8156 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | 4 | elsn2 3672 | . . 3 ⊢ (𝐴 ∈ {+∞} ↔ 𝐴 = +∞) |
| 6 | 5 | orbi2i 764 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| 7 | 2, 3, 6 | 3bitri 206 | 1 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∪ cun 3168 {csn 3638 +∞cpnf 8134 ℕ0cn0 9325 ℕ0*cxnn0 9388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-un 4493 ax-cnex 8046 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-pnf 8139 df-xr 8141 df-xnn0 9389 |
| This theorem is referenced by: xnn0xr 9393 pnf0xnn0 9395 xnn0nemnf 9399 xnn0nnn0pnf 9401 xnn0dcle 9954 xnn0letri 9955 xnn0lenn0nn0 10017 xnn0xadd0 10019 |
| Copyright terms: Public domain | W3C validator |