Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fxnn0nninf | GIF version |
Description: A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7088 instead of infnninfOLD 7089. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7091. |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
Ref | Expression |
---|---|
fxnn0nninf | ⊢ 𝐼:ℕ0*⟶ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
2 | fxnn0nninf.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
3 | 1, 2 | fnn0nninf 10372 | . . . . 5 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
4 | pnfex 7952 | . . . . . . . 8 ⊢ +∞ ∈ V | |
5 | omex 4570 | . . . . . . . . 9 ⊢ ω ∈ V | |
6 | 1oex 6392 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
7 | 6 | snex 4164 | . . . . . . . . 9 ⊢ {1o} ∈ V |
8 | 5, 7 | xpex 4719 | . . . . . . . 8 ⊢ (ω × {1o}) ∈ V |
9 | 4, 8 | f1osn 5472 | . . . . . . 7 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} |
10 | f1of 5432 | . . . . . . 7 ⊢ ({〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} → {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})}) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} |
12 | infnninfOLD 7089 | . . . . . . 7 ⊢ (ω × {1o}) ∈ ℕ∞ | |
13 | snssi 3717 | . . . . . . 7 ⊢ ((ω × {1o}) ∈ ℕ∞ → {(ω × {1o})} ⊆ ℕ∞) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ {(ω × {1o})} ⊆ ℕ∞ |
15 | fss 5349 | . . . . . 6 ⊢ (({〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ∞) → {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) | |
16 | 11, 14, 15 | mp2an 423 | . . . . 5 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞ |
17 | 3, 16 | pm3.2i 270 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) |
18 | disj 3457 | . . . . 5 ⊢ ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞}) | |
19 | nn0nepnf 9185 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ≠ +∞) | |
20 | 19 | neneqd 2357 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞) |
21 | elsni 3594 | . . . . . 6 ⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) | |
22 | 20, 21 | nsyl 618 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞}) |
23 | 18, 22 | mprgbir 2524 | . . . 4 ⊢ (ℕ0 ∩ {+∞}) = ∅ |
24 | fun2 5361 | . . . 4 ⊢ ((((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) | |
25 | 17, 23, 24 | mp2an 423 | . . 3 ⊢ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞ |
26 | fxnn0nninf.i | . . . 4 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
27 | 26 | feq1i 5330 | . . 3 ⊢ (𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ ↔ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) |
28 | 25, 27 | mpbir 145 | . 2 ⊢ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ |
29 | df-xnn0 9178 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
30 | 29 | feq2i 5331 | . 2 ⊢ (𝐼:ℕ0*⟶ℕ∞ ↔ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞) |
31 | 28, 30 | mpbir 145 | 1 ⊢ 𝐼:ℕ0*⟶ℕ∞ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 ifcif 3520 {csn 3576 〈cop 3579 ↦ cmpt 4043 ωcom 4567 × cxp 4602 ◡ccnv 4603 ∘ ccom 4608 ⟶wf 5184 –1-1-onto→wf1o 5187 (class class class)co 5842 freccfrec 6358 1oc1o 6377 ℕ∞xnninf 7084 0cc0 7753 1c1 7754 + caddc 7756 +∞cpnf 7930 ℕ0cn0 9114 ℕ0*cxnn0 9177 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-xnn0 9178 df-z 9192 df-uz 9467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |