![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fxnn0nninf | GIF version |
Description: A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7183 instead of infnninfOLD 7184. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7186. |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
Ref | Expression |
---|---|
fxnn0nninf | ⊢ 𝐼:ℕ0*⟶ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
2 | fxnn0nninf.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
3 | 1, 2 | fnn0nninf 10509 | . . . . 5 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
4 | pnfex 8073 | . . . . . . . 8 ⊢ +∞ ∈ V | |
5 | omex 4625 | . . . . . . . . 9 ⊢ ω ∈ V | |
6 | 1oex 6477 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
7 | 6 | snex 4214 | . . . . . . . . 9 ⊢ {1o} ∈ V |
8 | 5, 7 | xpex 4774 | . . . . . . . 8 ⊢ (ω × {1o}) ∈ V |
9 | 4, 8 | f1osn 5540 | . . . . . . 7 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} |
10 | f1of 5500 | . . . . . . 7 ⊢ ({〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} → {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})}) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} |
12 | infnninfOLD 7184 | . . . . . . 7 ⊢ (ω × {1o}) ∈ ℕ∞ | |
13 | snssi 3762 | . . . . . . 7 ⊢ ((ω × {1o}) ∈ ℕ∞ → {(ω × {1o})} ⊆ ℕ∞) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ {(ω × {1o})} ⊆ ℕ∞ |
15 | fss 5415 | . . . . . 6 ⊢ (({〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ∞) → {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) | |
16 | 11, 14, 15 | mp2an 426 | . . . . 5 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞ |
17 | 3, 16 | pm3.2i 272 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) |
18 | disj 3495 | . . . . 5 ⊢ ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞}) | |
19 | nn0nepnf 9311 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ≠ +∞) | |
20 | 19 | neneqd 2385 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞) |
21 | elsni 3636 | . . . . . 6 ⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) | |
22 | 20, 21 | nsyl 629 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞}) |
23 | 18, 22 | mprgbir 2552 | . . . 4 ⊢ (ℕ0 ∩ {+∞}) = ∅ |
24 | fun2 5427 | . . . 4 ⊢ ((((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) | |
25 | 17, 23, 24 | mp2an 426 | . . 3 ⊢ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞ |
26 | fxnn0nninf.i | . . . 4 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
27 | 26 | feq1i 5396 | . . 3 ⊢ (𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ ↔ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) |
28 | 25, 27 | mpbir 146 | . 2 ⊢ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ |
29 | df-xnn0 9304 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
30 | 29 | feq2i 5397 | . 2 ⊢ (𝐼:ℕ0*⟶ℕ∞ ↔ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞) |
31 | 28, 30 | mpbir 146 | 1 ⊢ 𝐼:ℕ0*⟶ℕ∞ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 ifcif 3557 {csn 3618 〈cop 3621 ↦ cmpt 4090 ωcom 4622 × cxp 4657 ◡ccnv 4658 ∘ ccom 4663 ⟶wf 5250 –1-1-onto→wf1o 5253 (class class class)co 5918 freccfrec 6443 1oc1o 6462 ℕ∞xnninf 7178 0cc0 7872 1c1 7873 + caddc 7875 +∞cpnf 8051 ℕ0cn0 9240 ℕ0*cxnn0 9303 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-1o 6469 df-2o 6470 df-map 6704 df-nninf 7179 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-xnn0 9304 df-z 9318 df-uz 9593 |
This theorem is referenced by: nninfctlemfo 12177 |
Copyright terms: Public domain | W3C validator |