ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fxnn0nninf GIF version

Theorem fxnn0nninf 10510
Description: A function from 0* into . (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7183 instead of infnninfOLD 7184. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ ⟨ω, +∞⟩) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) as in nnnninf2 7186.
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
fxnn0nninf 𝐼:ℕ0*⟶ℕ
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem fxnn0nninf
StepHypRef Expression
1 fxnn0nninf.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 fxnn0nninf.f . . . . . 6 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31, 2fnn0nninf 10509 . . . . 5 (𝐹𝐺):ℕ0⟶ℕ
4 pnfex 8073 . . . . . . . 8 +∞ ∈ V
5 omex 4625 . . . . . . . . 9 ω ∈ V
6 1oex 6477 . . . . . . . . . 10 1o ∈ V
76snex 4214 . . . . . . . . 9 {1o} ∈ V
85, 7xpex 4774 . . . . . . . 8 (ω × {1o}) ∈ V
94, 8f1osn 5540 . . . . . . 7 {⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})}
10 f1of 5500 . . . . . . 7 ({⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})} → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})})
119, 10ax-mp 5 . . . . . 6 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})}
12 infnninfOLD 7184 . . . . . . 7 (ω × {1o}) ∈ ℕ
13 snssi 3762 . . . . . . 7 ((ω × {1o}) ∈ ℕ → {(ω × {1o})} ⊆ ℕ)
1412, 13ax-mp 5 . . . . . 6 {(ω × {1o})} ⊆ ℕ
15 fss 5415 . . . . . 6 (({⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ) → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
1611, 14, 15mp2an 426 . . . . 5 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ
173, 16pm3.2i 272 . . . 4 ((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
18 disj 3495 . . . . 5 ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞})
19 nn0nepnf 9311 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ≠ +∞)
2019neneqd 2385 . . . . . 6 (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞)
21 elsni 3636 . . . . . 6 (𝑥 ∈ {+∞} → 𝑥 = +∞)
2220, 21nsyl 629 . . . . 5 (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞})
2318, 22mprgbir 2552 . . . 4 (ℕ0 ∩ {+∞}) = ∅
24 fun2 5427 . . . 4 ((((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2517, 23, 24mp2an 426 . . 3 ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ
26 fxnn0nninf.i . . . 4 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
2726feq1i 5396 . . 3 (𝐼:(ℕ0 ∪ {+∞})⟶ℕ ↔ ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2825, 27mpbir 146 . 2 𝐼:(ℕ0 ∪ {+∞})⟶ℕ
29 df-xnn0 9304 . . 3 0* = (ℕ0 ∪ {+∞})
3029feq2i 5397 . 2 (𝐼:ℕ0*⟶ℕ𝐼:(ℕ0 ∪ {+∞})⟶ℕ)
3128, 30mpbir 146 1 𝐼:ℕ0*⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2164  cun 3151  cin 3152  wss 3153  c0 3446  ifcif 3557  {csn 3618  cop 3621  cmpt 4090  ωcom 4622   × cxp 4657  ccnv 4658  ccom 4663  wf 5250  1-1-ontowf1o 5253  (class class class)co 5918  freccfrec 6443  1oc1o 6462  xnninf 7178  0cc0 7872  1c1 7873   + caddc 7875  +∞cpnf 8051  0cn0 9240  0*cxnn0 9303  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593
This theorem is referenced by:  nninfctlemfo  12177
  Copyright terms: Public domain W3C validator