ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fxnn0nninf GIF version

Theorem fxnn0nninf 10513
Description: A function from 0* into . (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7185 instead of infnninfOLD 7186. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ ⟨ω, +∞⟩) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) as in nnnninf2 7188.
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
fxnn0nninf 𝐼:ℕ0*⟶ℕ
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem fxnn0nninf
StepHypRef Expression
1 fxnn0nninf.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 fxnn0nninf.f . . . . . 6 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31, 2fnn0nninf 10512 . . . . 5 (𝐹𝐺):ℕ0⟶ℕ
4 pnfex 8075 . . . . . . . 8 +∞ ∈ V
5 omex 4626 . . . . . . . . 9 ω ∈ V
6 1oex 6479 . . . . . . . . . 10 1o ∈ V
76snex 4215 . . . . . . . . 9 {1o} ∈ V
85, 7xpex 4775 . . . . . . . 8 (ω × {1o}) ∈ V
94, 8f1osn 5541 . . . . . . 7 {⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})}
10 f1of 5501 . . . . . . 7 ({⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})} → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})})
119, 10ax-mp 5 . . . . . 6 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})}
12 infnninfOLD 7186 . . . . . . 7 (ω × {1o}) ∈ ℕ
13 snssi 3763 . . . . . . 7 ((ω × {1o}) ∈ ℕ → {(ω × {1o})} ⊆ ℕ)
1412, 13ax-mp 5 . . . . . 6 {(ω × {1o})} ⊆ ℕ
15 fss 5416 . . . . . 6 (({⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ) → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
1611, 14, 15mp2an 426 . . . . 5 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ
173, 16pm3.2i 272 . . . 4 ((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
18 disj 3496 . . . . 5 ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞})
19 nn0nepnf 9314 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ≠ +∞)
2019neneqd 2385 . . . . . 6 (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞)
21 elsni 3637 . . . . . 6 (𝑥 ∈ {+∞} → 𝑥 = +∞)
2220, 21nsyl 629 . . . . 5 (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞})
2318, 22mprgbir 2552 . . . 4 (ℕ0 ∩ {+∞}) = ∅
24 fun2 5428 . . . 4 ((((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2517, 23, 24mp2an 426 . . 3 ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ
26 fxnn0nninf.i . . . 4 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
2726feq1i 5397 . . 3 (𝐼:(ℕ0 ∪ {+∞})⟶ℕ ↔ ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2825, 27mpbir 146 . 2 𝐼:(ℕ0 ∪ {+∞})⟶ℕ
29 df-xnn0 9307 . . 3 0* = (ℕ0 ∪ {+∞})
3029feq2i 5398 . 2 (𝐼:ℕ0*⟶ℕ𝐼:(ℕ0 ∪ {+∞})⟶ℕ)
3128, 30mpbir 146 1 𝐼:ℕ0*⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2164  cun 3152  cin 3153  wss 3154  c0 3447  ifcif 3558  {csn 3619  cop 3622  cmpt 4091  ωcom 4623   × cxp 4658  ccnv 4659  ccom 4664  wf 5251  1-1-ontowf1o 5254  (class class class)co 5919  freccfrec 6445  1oc1o 6464  xnninf 7180  0cc0 7874  1c1 7875   + caddc 7877  +∞cpnf 8053  0cn0 9243  0*cxnn0 9306  cz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-map 6706  df-nninf 7181  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-xnn0 9307  df-z 9321  df-uz 9596
This theorem is referenced by:  nninfctlemfo  12180
  Copyright terms: Public domain W3C validator