ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fxnn0nninf GIF version

Theorem fxnn0nninf 10648
Description: A function from 0* into . (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7279 instead of infnninfOLD 7280. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ ⟨ω, +∞⟩) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) as in nnnninf2 7282.
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
fxnn0nninf 𝐼:ℕ0*⟶ℕ
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem fxnn0nninf
StepHypRef Expression
1 fxnn0nninf.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 fxnn0nninf.f . . . . . 6 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31, 2fnn0nninf 10647 . . . . 5 (𝐹𝐺):ℕ0⟶ℕ
4 pnfex 8188 . . . . . . . 8 +∞ ∈ V
5 omex 4682 . . . . . . . . 9 ω ∈ V
6 1oex 6560 . . . . . . . . . 10 1o ∈ V
76snex 4268 . . . . . . . . 9 {1o} ∈ V
85, 7xpex 4831 . . . . . . . 8 (ω × {1o}) ∈ V
94, 8f1osn 5609 . . . . . . 7 {⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})}
10 f1of 5568 . . . . . . 7 ({⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})} → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})})
119, 10ax-mp 5 . . . . . 6 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})}
12 infnninfOLD 7280 . . . . . . 7 (ω × {1o}) ∈ ℕ
13 snssi 3811 . . . . . . 7 ((ω × {1o}) ∈ ℕ → {(ω × {1o})} ⊆ ℕ)
1412, 13ax-mp 5 . . . . . 6 {(ω × {1o})} ⊆ ℕ
15 fss 5481 . . . . . 6 (({⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ) → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
1611, 14, 15mp2an 426 . . . . 5 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ
173, 16pm3.2i 272 . . . 4 ((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
18 disj 3540 . . . . 5 ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞})
19 nn0nepnf 9428 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ≠ +∞)
2019neneqd 2421 . . . . . 6 (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞)
21 elsni 3684 . . . . . 6 (𝑥 ∈ {+∞} → 𝑥 = +∞)
2220, 21nsyl 631 . . . . 5 (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞})
2318, 22mprgbir 2588 . . . 4 (ℕ0 ∩ {+∞}) = ∅
24 fun2 5494 . . . 4 ((((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2517, 23, 24mp2an 426 . . 3 ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ
26 fxnn0nninf.i . . . 4 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
2726feq1i 5462 . . 3 (𝐼:(ℕ0 ∪ {+∞})⟶ℕ ↔ ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2825, 27mpbir 146 . 2 𝐼:(ℕ0 ∪ {+∞})⟶ℕ
29 df-xnn0 9421 . . 3 0* = (ℕ0 ∪ {+∞})
3029feq2i 5463 . 2 (𝐼:ℕ0*⟶ℕ𝐼:(ℕ0 ∪ {+∞})⟶ℕ)
3128, 30mpbir 146 1 𝐼:ℕ0*⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1395  wcel 2200  cun 3195  cin 3196  wss 3197  c0 3491  ifcif 3602  {csn 3666  cop 3669  cmpt 4144  ωcom 4679   × cxp 4714  ccnv 4715  ccom 4720  wf 5310  1-1-ontowf1o 5313  (class class class)co 5994  freccfrec 6526  1oc1o 6545  xnninf 7274  0cc0 7987  1c1 7988   + caddc 7990  +∞cpnf 8166  0cn0 9357  0*cxnn0 9420  cz 9434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-recs 6441  df-frec 6527  df-1o 6552  df-2o 6553  df-map 6787  df-nninf 7275  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-xnn0 9421  df-z 9435  df-uz 9711
This theorem is referenced by:  nninfctlemfo  12547
  Copyright terms: Public domain W3C validator