| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fxnn0nninf | GIF version | ||
| Description: A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7299 instead of infnninfOLD 7300. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7302. |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| fxnn0nninf | ⊢ 𝐼:ℕ0*⟶ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 2 | fxnn0nninf.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 3 | 1, 2 | fnn0nninf 10668 | . . . . 5 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| 4 | pnfex 8208 | . . . . . . . 8 ⊢ +∞ ∈ V | |
| 5 | omex 4685 | . . . . . . . . 9 ⊢ ω ∈ V | |
| 6 | 1oex 6576 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 7 | 6 | snex 4269 | . . . . . . . . 9 ⊢ {1o} ∈ V |
| 8 | 5, 7 | xpex 4834 | . . . . . . . 8 ⊢ (ω × {1o}) ∈ V |
| 9 | 4, 8 | f1osn 5615 | . . . . . . 7 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} |
| 10 | f1of 5574 | . . . . . . 7 ⊢ ({〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} → {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})}) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} |
| 12 | infnninfOLD 7300 | . . . . . . 7 ⊢ (ω × {1o}) ∈ ℕ∞ | |
| 13 | snssi 3812 | . . . . . . 7 ⊢ ((ω × {1o}) ∈ ℕ∞ → {(ω × {1o})} ⊆ ℕ∞) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ {(ω × {1o})} ⊆ ℕ∞ |
| 15 | fss 5485 | . . . . . 6 ⊢ (({〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ∞) → {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) | |
| 16 | 11, 14, 15 | mp2an 426 | . . . . 5 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞ |
| 17 | 3, 16 | pm3.2i 272 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) |
| 18 | disj 3540 | . . . . 5 ⊢ ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞}) | |
| 19 | nn0nepnf 9448 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ≠ +∞) | |
| 20 | 19 | neneqd 2421 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞) |
| 21 | elsni 3684 | . . . . . 6 ⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) | |
| 22 | 20, 21 | nsyl 631 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞}) |
| 23 | 18, 22 | mprgbir 2588 | . . . 4 ⊢ (ℕ0 ∩ {+∞}) = ∅ |
| 24 | fun2 5500 | . . . 4 ⊢ ((((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) | |
| 25 | 17, 23, 24 | mp2an 426 | . . 3 ⊢ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞ |
| 26 | fxnn0nninf.i | . . . 4 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 27 | 26 | feq1i 5466 | . . 3 ⊢ (𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ ↔ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) |
| 28 | 25, 27 | mpbir 146 | . 2 ⊢ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ |
| 29 | df-xnn0 9441 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 30 | 29 | feq2i 5467 | . 2 ⊢ (𝐼:ℕ0*⟶ℕ∞ ↔ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞) |
| 31 | 28, 30 | mpbir 146 | 1 ⊢ 𝐼:ℕ0*⟶ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 ifcif 3602 {csn 3666 〈cop 3669 ↦ cmpt 4145 ωcom 4682 × cxp 4717 ◡ccnv 4718 ∘ ccom 4723 ⟶wf 5314 –1-1-onto→wf1o 5317 (class class class)co 6007 freccfrec 6542 1oc1o 6561 ℕ∞xnninf 7294 0cc0 8007 1c1 8008 + caddc 8010 +∞cpnf 8186 ℕ0cn0 9377 ℕ0*cxnn0 9440 ℤcz 9454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-recs 6457 df-frec 6543 df-1o 6568 df-2o 6569 df-map 6805 df-nninf 7295 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-xnn0 9441 df-z 9455 df-uz 9731 |
| This theorem is referenced by: nninfctlemfo 12569 |
| Copyright terms: Public domain | W3C validator |