| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fxnn0nninf | GIF version | ||
| Description: A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7199 instead of infnninfOLD 7200. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7202. |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| fxnn0nninf | ⊢ 𝐼:ℕ0*⟶ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 2 | fxnn0nninf.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 3 | 1, 2 | fnn0nninf 10547 | . . . . 5 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| 4 | pnfex 8097 | . . . . . . . 8 ⊢ +∞ ∈ V | |
| 5 | omex 4630 | . . . . . . . . 9 ⊢ ω ∈ V | |
| 6 | 1oex 6491 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 7 | 6 | snex 4219 | . . . . . . . . 9 ⊢ {1o} ∈ V |
| 8 | 5, 7 | xpex 4779 | . . . . . . . 8 ⊢ (ω × {1o}) ∈ V |
| 9 | 4, 8 | f1osn 5547 | . . . . . . 7 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} |
| 10 | f1of 5507 | . . . . . . 7 ⊢ ({〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} → {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})}) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} |
| 12 | infnninfOLD 7200 | . . . . . . 7 ⊢ (ω × {1o}) ∈ ℕ∞ | |
| 13 | snssi 3767 | . . . . . . 7 ⊢ ((ω × {1o}) ∈ ℕ∞ → {(ω × {1o})} ⊆ ℕ∞) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ {(ω × {1o})} ⊆ ℕ∞ |
| 15 | fss 5422 | . . . . . 6 ⊢ (({〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ∞) → {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) | |
| 16 | 11, 14, 15 | mp2an 426 | . . . . 5 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞ |
| 17 | 3, 16 | pm3.2i 272 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) |
| 18 | disj 3500 | . . . . 5 ⊢ ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞}) | |
| 19 | nn0nepnf 9337 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ≠ +∞) | |
| 20 | 19 | neneqd 2388 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞) |
| 21 | elsni 3641 | . . . . . 6 ⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) | |
| 22 | 20, 21 | nsyl 629 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞}) |
| 23 | 18, 22 | mprgbir 2555 | . . . 4 ⊢ (ℕ0 ∩ {+∞}) = ∅ |
| 24 | fun2 5434 | . . . 4 ⊢ ((((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) | |
| 25 | 17, 23, 24 | mp2an 426 | . . 3 ⊢ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞ |
| 26 | fxnn0nninf.i | . . . 4 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 27 | 26 | feq1i 5403 | . . 3 ⊢ (𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ ↔ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) |
| 28 | 25, 27 | mpbir 146 | . 2 ⊢ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ |
| 29 | df-xnn0 9330 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 30 | 29 | feq2i 5404 | . 2 ⊢ (𝐼:ℕ0*⟶ℕ∞ ↔ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞) |
| 31 | 28, 30 | mpbir 146 | 1 ⊢ 𝐼:ℕ0*⟶ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ∩ cin 3156 ⊆ wss 3157 ∅c0 3451 ifcif 3562 {csn 3623 〈cop 3626 ↦ cmpt 4095 ωcom 4627 × cxp 4662 ◡ccnv 4663 ∘ ccom 4668 ⟶wf 5255 –1-1-onto→wf1o 5258 (class class class)co 5925 freccfrec 6457 1oc1o 6476 ℕ∞xnninf 7194 0cc0 7896 1c1 7897 + caddc 7899 +∞cpnf 8075 ℕ0cn0 9266 ℕ0*cxnn0 9329 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-1o 6483 df-2o 6484 df-map 6718 df-nninf 7195 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-xnn0 9330 df-z 9344 df-uz 9619 |
| This theorem is referenced by: nninfctlemfo 12232 |
| Copyright terms: Public domain | W3C validator |