ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fxnn0nninf GIF version

Theorem fxnn0nninf 10669
Description: A function from 0* into . (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7299 instead of infnninfOLD 7300. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ ⟨ω, +∞⟩) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) as in nnnninf2 7302.
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
fxnn0nninf.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
fxnn0nninf 𝐼:ℕ0*⟶ℕ
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem fxnn0nninf
StepHypRef Expression
1 fxnn0nninf.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 fxnn0nninf.f . . . . . 6 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
31, 2fnn0nninf 10668 . . . . 5 (𝐹𝐺):ℕ0⟶ℕ
4 pnfex 8208 . . . . . . . 8 +∞ ∈ V
5 omex 4685 . . . . . . . . 9 ω ∈ V
6 1oex 6576 . . . . . . . . . 10 1o ∈ V
76snex 4269 . . . . . . . . 9 {1o} ∈ V
85, 7xpex 4834 . . . . . . . 8 (ω × {1o}) ∈ V
94, 8f1osn 5615 . . . . . . 7 {⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})}
10 f1of 5574 . . . . . . 7 ({⟨+∞, (ω × {1o})⟩}:{+∞}–1-1-onto→{(ω × {1o})} → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})})
119, 10ax-mp 5 . . . . . 6 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})}
12 infnninfOLD 7300 . . . . . . 7 (ω × {1o}) ∈ ℕ
13 snssi 3812 . . . . . . 7 ((ω × {1o}) ∈ ℕ → {(ω × {1o})} ⊆ ℕ)
1412, 13ax-mp 5 . . . . . 6 {(ω × {1o})} ⊆ ℕ
15 fss 5485 . . . . . 6 (({⟨+∞, (ω × {1o})⟩}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ) → {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
1611, 14, 15mp2an 426 . . . . 5 {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ
173, 16pm3.2i 272 . . . 4 ((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ)
18 disj 3540 . . . . 5 ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞})
19 nn0nepnf 9448 . . . . . . 7 (𝑥 ∈ ℕ0𝑥 ≠ +∞)
2019neneqd 2421 . . . . . 6 (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞)
21 elsni 3684 . . . . . 6 (𝑥 ∈ {+∞} → 𝑥 = +∞)
2220, 21nsyl 631 . . . . 5 (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞})
2318, 22mprgbir 2588 . . . 4 (ℕ0 ∩ {+∞}) = ∅
24 fun2 5500 . . . 4 ((((𝐹𝐺):ℕ0⟶ℕ ∧ {⟨+∞, (ω × {1o})⟩}:{+∞}⟶ℕ) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2517, 23, 24mp2an 426 . . 3 ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ
26 fxnn0nninf.i . . . 4 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
2726feq1i 5466 . . 3 (𝐼:(ℕ0 ∪ {+∞})⟶ℕ ↔ ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩}):(ℕ0 ∪ {+∞})⟶ℕ)
2825, 27mpbir 146 . 2 𝐼:(ℕ0 ∪ {+∞})⟶ℕ
29 df-xnn0 9441 . . 3 0* = (ℕ0 ∪ {+∞})
3029feq2i 5467 . 2 (𝐼:ℕ0*⟶ℕ𝐼:(ℕ0 ∪ {+∞})⟶ℕ)
3128, 30mpbir 146 1 𝐼:ℕ0*⟶ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1395  wcel 2200  cun 3195  cin 3196  wss 3197  c0 3491  ifcif 3602  {csn 3666  cop 3669  cmpt 4145  ωcom 4682   × cxp 4717  ccnv 4718  ccom 4723  wf 5314  1-1-ontowf1o 5317  (class class class)co 6007  freccfrec 6542  1oc1o 6561  xnninf 7294  0cc0 8007  1c1 8008   + caddc 8010  +∞cpnf 8186  0cn0 9377  0*cxnn0 9440  cz 9454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-map 6805  df-nninf 7295  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731
This theorem is referenced by:  nninfctlemfo  12569
  Copyright terms: Public domain W3C validator