![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fxnn0nninf | GIF version |
Description: A function from β0* into ββ. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7124 instead of infnninfOLD 7125. More generally, this theorem and most theorems in this section could use an extended πΊ defined by πΊ = (frec((π₯ β β€ β¦ (π₯ + 1)), 0) βͺ β¨Ο, +ββ©) and πΉ = (π β suc Ο β¦ (π β Ο β¦ if(π β π, 1o, β ))) as in nnnninf2 7127. |
Ref | Expression |
---|---|
fxnn0nninf.g | β’ πΊ = frec((π₯ β β€ β¦ (π₯ + 1)), 0) |
fxnn0nninf.f | β’ πΉ = (π β Ο β¦ (π β Ο β¦ if(π β π, 1o, β ))) |
fxnn0nninf.i | β’ πΌ = ((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©}) |
Ref | Expression |
---|---|
fxnn0nninf | β’ πΌ:β0*βΆββ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.g | . . . . . 6 β’ πΊ = frec((π₯ β β€ β¦ (π₯ + 1)), 0) | |
2 | fxnn0nninf.f | . . . . . 6 β’ πΉ = (π β Ο β¦ (π β Ο β¦ if(π β π, 1o, β ))) | |
3 | 1, 2 | fnn0nninf 10439 | . . . . 5 β’ (πΉ β β‘πΊ):β0βΆββ |
4 | pnfex 8013 | . . . . . . . 8 β’ +β β V | |
5 | omex 4594 | . . . . . . . . 9 β’ Ο β V | |
6 | 1oex 6427 | . . . . . . . . . 10 β’ 1o β V | |
7 | 6 | snex 4187 | . . . . . . . . 9 β’ {1o} β V |
8 | 5, 7 | xpex 4743 | . . . . . . . 8 β’ (Ο Γ {1o}) β V |
9 | 4, 8 | f1osn 5503 | . . . . . . 7 β’ {β¨+β, (Ο Γ {1o})β©}:{+β}β1-1-ontoβ{(Ο Γ {1o})} |
10 | f1of 5463 | . . . . . . 7 β’ ({β¨+β, (Ο Γ {1o})β©}:{+β}β1-1-ontoβ{(Ο Γ {1o})} β {β¨+β, (Ο Γ {1o})β©}:{+β}βΆ{(Ο Γ {1o})}) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 β’ {β¨+β, (Ο Γ {1o})β©}:{+β}βΆ{(Ο Γ {1o})} |
12 | infnninfOLD 7125 | . . . . . . 7 β’ (Ο Γ {1o}) β ββ | |
13 | snssi 3738 | . . . . . . 7 β’ ((Ο Γ {1o}) β ββ β {(Ο Γ {1o})} β ββ) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 β’ {(Ο Γ {1o})} β ββ |
15 | fss 5379 | . . . . . 6 β’ (({β¨+β, (Ο Γ {1o})β©}:{+β}βΆ{(Ο Γ {1o})} β§ {(Ο Γ {1o})} β ββ) β {β¨+β, (Ο Γ {1o})β©}:{+β}βΆββ) | |
16 | 11, 14, 15 | mp2an 426 | . . . . 5 β’ {β¨+β, (Ο Γ {1o})β©}:{+β}βΆββ |
17 | 3, 16 | pm3.2i 272 | . . . 4 β’ ((πΉ β β‘πΊ):β0βΆββ β§ {β¨+β, (Ο Γ {1o})β©}:{+β}βΆββ) |
18 | disj 3473 | . . . . 5 β’ ((β0 β© {+β}) = β β βπ₯ β β0 Β¬ π₯ β {+β}) | |
19 | nn0nepnf 9249 | . . . . . . 7 β’ (π₯ β β0 β π₯ β +β) | |
20 | 19 | neneqd 2368 | . . . . . 6 β’ (π₯ β β0 β Β¬ π₯ = +β) |
21 | elsni 3612 | . . . . . 6 β’ (π₯ β {+β} β π₯ = +β) | |
22 | 20, 21 | nsyl 628 | . . . . 5 β’ (π₯ β β0 β Β¬ π₯ β {+β}) |
23 | 18, 22 | mprgbir 2535 | . . . 4 β’ (β0 β© {+β}) = β |
24 | fun2 5391 | . . . 4 β’ ((((πΉ β β‘πΊ):β0βΆββ β§ {β¨+β, (Ο Γ {1o})β©}:{+β}βΆββ) β§ (β0 β© {+β}) = β ) β ((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©}):(β0 βͺ {+β})βΆββ) | |
25 | 17, 23, 24 | mp2an 426 | . . 3 β’ ((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©}):(β0 βͺ {+β})βΆββ |
26 | fxnn0nninf.i | . . . 4 β’ πΌ = ((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©}) | |
27 | 26 | feq1i 5360 | . . 3 β’ (πΌ:(β0 βͺ {+β})βΆββ β ((πΉ β β‘πΊ) βͺ {β¨+β, (Ο Γ {1o})β©}):(β0 βͺ {+β})βΆββ) |
28 | 25, 27 | mpbir 146 | . 2 β’ πΌ:(β0 βͺ {+β})βΆββ |
29 | df-xnn0 9242 | . . 3 β’ β0* = (β0 βͺ {+β}) | |
30 | 29 | feq2i 5361 | . 2 β’ (πΌ:β0*βΆββ β πΌ:(β0 βͺ {+β})βΆββ) |
31 | 28, 30 | mpbir 146 | 1 β’ πΌ:β0*βΆββ |
Colors of variables: wff set class |
Syntax hints: Β¬ wn 3 β§ wa 104 = wceq 1353 β wcel 2148 βͺ cun 3129 β© cin 3130 β wss 3131 β c0 3424 ifcif 3536 {csn 3594 β¨cop 3597 β¦ cmpt 4066 Οcom 4591 Γ cxp 4626 β‘ccnv 4627 β ccom 4632 βΆwf 5214 β1-1-ontoβwf1o 5217 (class class class)co 5877 freccfrec 6393 1oc1o 6412 ββxnninf 7120 0cc0 7813 1c1 7814 + caddc 7816 +βcpnf 7991 β0cn0 9178 β0*cxnn0 9241 β€cz 9255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-recs 6308 df-frec 6394 df-1o 6419 df-2o 6420 df-map 6652 df-nninf 7121 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-xnn0 9242 df-z 9256 df-uz 9531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |