![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fxnn0nninf | GIF version |
Description: A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1𝑜, ∅))) |
fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1𝑜})〉}) |
Ref | Expression |
---|---|
fxnn0nninf | ⊢ 𝐼:ℕ0*⟶ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
2 | fxnn0nninf.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1𝑜, ∅))) | |
3 | 1, 2 | fnn0nninf 9831 | . . . . 5 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
4 | pnfex 7531 | . . . . . . . 8 ⊢ +∞ ∈ V | |
5 | omex 4406 | . . . . . . . . 9 ⊢ ω ∈ V | |
6 | 1oex 6181 | . . . . . . . . . 10 ⊢ 1𝑜 ∈ V | |
7 | 6 | snex 4018 | . . . . . . . . 9 ⊢ {1𝑜} ∈ V |
8 | 5, 7 | xpex 4549 | . . . . . . . 8 ⊢ (ω × {1𝑜}) ∈ V |
9 | 4, 8 | f1osn 5287 | . . . . . . 7 ⊢ {〈+∞, (ω × {1𝑜})〉}:{+∞}–1-1-onto→{(ω × {1𝑜})} |
10 | f1of 5247 | . . . . . . 7 ⊢ ({〈+∞, (ω × {1𝑜})〉}:{+∞}–1-1-onto→{(ω × {1𝑜})} → {〈+∞, (ω × {1𝑜})〉}:{+∞}⟶{(ω × {1𝑜})}) | |
11 | 9, 10 | ax-mp 7 | . . . . . 6 ⊢ {〈+∞, (ω × {1𝑜})〉}:{+∞}⟶{(ω × {1𝑜})} |
12 | infnninf 6795 | . . . . . . 7 ⊢ (ω × {1𝑜}) ∈ ℕ∞ | |
13 | snssi 3579 | . . . . . . 7 ⊢ ((ω × {1𝑜}) ∈ ℕ∞ → {(ω × {1𝑜})} ⊆ ℕ∞) | |
14 | 12, 13 | ax-mp 7 | . . . . . 6 ⊢ {(ω × {1𝑜})} ⊆ ℕ∞ |
15 | fss 5166 | . . . . . 6 ⊢ (({〈+∞, (ω × {1𝑜})〉}:{+∞}⟶{(ω × {1𝑜})} ∧ {(ω × {1𝑜})} ⊆ ℕ∞) → {〈+∞, (ω × {1𝑜})〉}:{+∞}⟶ℕ∞) | |
16 | 11, 14, 15 | mp2an 417 | . . . . 5 ⊢ {〈+∞, (ω × {1𝑜})〉}:{+∞}⟶ℕ∞ |
17 | 3, 16 | pm3.2i 266 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1𝑜})〉}:{+∞}⟶ℕ∞) |
18 | disj 3330 | . . . . 5 ⊢ ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞}) | |
19 | nn0nepnf 8734 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ≠ +∞) | |
20 | 19 | neneqd 2276 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞) |
21 | elsni 3462 | . . . . . 6 ⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) | |
22 | 20, 21 | nsyl 593 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞}) |
23 | 18, 22 | mprgbir 2433 | . . . 4 ⊢ (ℕ0 ∩ {+∞}) = ∅ |
24 | fun2 5178 | . . . 4 ⊢ ((((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1𝑜})〉}:{+∞}⟶ℕ∞) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1𝑜})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) | |
25 | 17, 23, 24 | mp2an 417 | . . 3 ⊢ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1𝑜})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞ |
26 | fxnn0nninf.i | . . . 4 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1𝑜})〉}) | |
27 | 26 | feq1i 5148 | . . 3 ⊢ (𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ ↔ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1𝑜})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) |
28 | 25, 27 | mpbir 144 | . 2 ⊢ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ |
29 | df-xnn0 8727 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
30 | 29 | feq2i 5149 | . 2 ⊢ (𝐼:ℕ0*⟶ℕ∞ ↔ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞) |
31 | 28, 30 | mpbir 144 | 1 ⊢ 𝐼:ℕ0*⟶ℕ∞ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ∪ cun 2997 ∩ cin 2998 ⊆ wss 2999 ∅c0 3286 ifcif 3391 {csn 3444 〈cop 3447 ↦ cmpt 3897 ωcom 4403 × cxp 4434 ◡ccnv 4435 ∘ ccom 4440 ⟶wf 5006 –1-1-onto→wf1o 5009 (class class class)co 5644 freccfrec 6147 1𝑜c1o 6166 ℕ∞xnninf 6779 0cc0 7340 1c1 7341 + caddc 7343 +∞cpnf 7509 ℕ0cn0 8663 ℕ0*cxnn0 8726 ℤcz 8740 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3952 ax-sep 3955 ax-nul 3963 ax-pow 4007 ax-pr 4034 ax-un 4258 ax-setind 4351 ax-iinf 4401 ax-cnex 7426 ax-resscn 7427 ax-1cn 7428 ax-1re 7429 ax-icn 7430 ax-addcl 7431 ax-addrcl 7432 ax-mulcl 7433 ax-addcom 7435 ax-addass 7437 ax-distr 7439 ax-i2m1 7440 ax-0lt1 7441 ax-0id 7443 ax-rnegex 7444 ax-cnre 7446 ax-pre-ltirr 7447 ax-pre-ltwlin 7448 ax-pre-lttrn 7449 ax-pre-ltadd 7451 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3392 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-int 3687 df-iun 3730 df-br 3844 df-opab 3898 df-mpt 3899 df-tr 3935 df-id 4118 df-iord 4191 df-on 4193 df-ilim 4194 df-suc 4196 df-iom 4404 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-ima 4449 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-f1 5015 df-fo 5016 df-f1o 5017 df-fv 5018 df-riota 5600 df-ov 5647 df-oprab 5648 df-mpt2 5649 df-recs 6062 df-frec 6148 df-1o 6173 df-2o 6174 df-map 6397 df-nninf 6781 df-pnf 7514 df-mnf 7515 df-xr 7516 df-ltxr 7517 df-le 7518 df-sub 7645 df-neg 7646 df-inn 8413 df-n0 8664 df-xnn0 8727 df-z 8741 df-uz 9010 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |