| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fxnn0nninf | GIF version | ||
| Description: A function from ℕ0* into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) TODO: use infnninf 7238 instead of infnninfOLD 7239. More generally, this theorem and most theorems in this section could use an extended 𝐺 defined by 𝐺 = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ 〈ω, +∞〉) and 𝐹 = (𝑛 ∈ suc ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) as in nnnninf2 7241. |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| fxnn0nninf.i | ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) |
| Ref | Expression |
|---|---|
| fxnn0nninf | ⊢ 𝐼:ℕ0*⟶ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 2 | fxnn0nninf.f | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 3 | 1, 2 | fnn0nninf 10596 | . . . . 5 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| 4 | pnfex 8139 | . . . . . . . 8 ⊢ +∞ ∈ V | |
| 5 | omex 4646 | . . . . . . . . 9 ⊢ ω ∈ V | |
| 6 | 1oex 6520 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 7 | 6 | snex 4234 | . . . . . . . . 9 ⊢ {1o} ∈ V |
| 8 | 5, 7 | xpex 4795 | . . . . . . . 8 ⊢ (ω × {1o}) ∈ V |
| 9 | 4, 8 | f1osn 5572 | . . . . . . 7 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} |
| 10 | f1of 5531 | . . . . . . 7 ⊢ ({〈+∞, (ω × {1o})〉}:{+∞}–1-1-onto→{(ω × {1o})} → {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})}) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} |
| 12 | infnninfOLD 7239 | . . . . . . 7 ⊢ (ω × {1o}) ∈ ℕ∞ | |
| 13 | snssi 3780 | . . . . . . 7 ⊢ ((ω × {1o}) ∈ ℕ∞ → {(ω × {1o})} ⊆ ℕ∞) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ {(ω × {1o})} ⊆ ℕ∞ |
| 15 | fss 5444 | . . . . . 6 ⊢ (({〈+∞, (ω × {1o})〉}:{+∞}⟶{(ω × {1o})} ∧ {(ω × {1o})} ⊆ ℕ∞) → {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) | |
| 16 | 11, 14, 15 | mp2an 426 | . . . . 5 ⊢ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞ |
| 17 | 3, 16 | pm3.2i 272 | . . . 4 ⊢ ((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) |
| 18 | disj 3511 | . . . . 5 ⊢ ((ℕ0 ∩ {+∞}) = ∅ ↔ ∀𝑥 ∈ ℕ0 ¬ 𝑥 ∈ {+∞}) | |
| 19 | nn0nepnf 9379 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ≠ +∞) | |
| 20 | 19 | neneqd 2398 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 = +∞) |
| 21 | elsni 3653 | . . . . . 6 ⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) | |
| 22 | 20, 21 | nsyl 629 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 → ¬ 𝑥 ∈ {+∞}) |
| 23 | 18, 22 | mprgbir 2565 | . . . 4 ⊢ (ℕ0 ∩ {+∞}) = ∅ |
| 24 | fun2 5457 | . . . 4 ⊢ ((((𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ ∧ {〈+∞, (ω × {1o})〉}:{+∞}⟶ℕ∞) ∧ (ℕ0 ∩ {+∞}) = ∅) → ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) | |
| 25 | 17, 23, 24 | mp2an 426 | . . 3 ⊢ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞ |
| 26 | fxnn0nninf.i | . . . 4 ⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}) | |
| 27 | 26 | feq1i 5425 | . . 3 ⊢ (𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ ↔ ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω × {1o})〉}):(ℕ0 ∪ {+∞})⟶ℕ∞) |
| 28 | 25, 27 | mpbir 146 | . 2 ⊢ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞ |
| 29 | df-xnn0 9372 | . . 3 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 30 | 29 | feq2i 5426 | . 2 ⊢ (𝐼:ℕ0*⟶ℕ∞ ↔ 𝐼:(ℕ0 ∪ {+∞})⟶ℕ∞) |
| 31 | 28, 30 | mpbir 146 | 1 ⊢ 𝐼:ℕ0*⟶ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∪ cun 3166 ∩ cin 3167 ⊆ wss 3168 ∅c0 3462 ifcif 3573 {csn 3635 〈cop 3638 ↦ cmpt 4110 ωcom 4643 × cxp 4678 ◡ccnv 4679 ∘ ccom 4684 ⟶wf 5273 –1-1-onto→wf1o 5276 (class class class)co 5954 freccfrec 6486 1oc1o 6505 ℕ∞xnninf 7233 0cc0 7938 1c1 7939 + caddc 7941 +∞cpnf 8117 ℕ0cn0 9308 ℕ0*cxnn0 9371 ℤcz 9385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-recs 6401 df-frec 6487 df-1o 6512 df-2o 6513 df-map 6747 df-nninf 7234 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-n0 9309 df-xnn0 9372 df-z 9386 df-uz 9662 |
| This theorem is referenced by: nninfctlemfo 12411 |
| Copyright terms: Public domain | W3C validator |