ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssxnn0 GIF version

Theorem nn0ssxnn0 9374
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 3338 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 9372 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 3230 1 0 ⊆ ℕ0*
Colors of variables: wff set class
Syntax hints:  cun 3166  wss 3168  {csn 3635  +∞cpnf 8117  0cn0 9308  0*cxnn0 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-xnn0 9372
This theorem is referenced by:  nn0xnn0  9375  0xnn0  9377  nn0xnn0d  9380  nninfctlemfo  12411
  Copyright terms: Public domain W3C validator