![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ssxnn0 | GIF version |
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0ssxnn0 | ⊢ ℕ0 ⊆ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3322 | . 2 ⊢ ℕ0 ⊆ (ℕ0 ∪ {+∞}) | |
2 | df-xnn0 9304 | . 2 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
3 | 1, 2 | sseqtrri 3214 | 1 ⊢ ℕ0 ⊆ ℕ0* |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3151 ⊆ wss 3153 {csn 3618 +∞cpnf 8051 ℕ0cn0 9240 ℕ0*cxnn0 9303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-xnn0 9304 |
This theorem is referenced by: nn0xnn0 9307 0xnn0 9309 nn0xnn0d 9312 nninfctlemfo 12177 |
Copyright terms: Public domain | W3C validator |