ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssxnn0 GIF version

Theorem nn0ssxnn0 9201
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 3290 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 9199 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 3182 1 0 ⊆ ℕ0*
Colors of variables: wff set class
Syntax hints:  cun 3119  wss 3121  {csn 3583  +∞cpnf 7951  0cn0 9135  0*cxnn0 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-xnn0 9199
This theorem is referenced by:  nn0xnn0  9202  0xnn0  9204  nn0xnn0d  9207
  Copyright terms: Public domain W3C validator