ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssxnn0 GIF version

Theorem nn0ssxnn0 9306
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 3322 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 9304 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 3214 1 0 ⊆ ℕ0*
Colors of variables: wff set class
Syntax hints:  cun 3151  wss 3153  {csn 3618  +∞cpnf 8051  0cn0 9240  0*cxnn0 9303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-xnn0 9304
This theorem is referenced by:  nn0xnn0  9307  0xnn0  9309  nn0xnn0d  9312  nninfctlemfo  12177
  Copyright terms: Public domain W3C validator