| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ssxnn0 | GIF version | ||
| Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| nn0ssxnn0 | ⊢ ℕ0 ⊆ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3326 | . 2 ⊢ ℕ0 ⊆ (ℕ0 ∪ {+∞}) | |
| 2 | df-xnn0 9313 | . 2 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
| 3 | 1, 2 | sseqtrri 3218 | 1 ⊢ ℕ0 ⊆ ℕ0* |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 {csn 3622 +∞cpnf 8058 ℕ0cn0 9249 ℕ0*cxnn0 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xnn0 9313 |
| This theorem is referenced by: nn0xnn0 9316 0xnn0 9318 nn0xnn0d 9321 nninfctlemfo 12207 |
| Copyright terms: Public domain | W3C validator |