ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssxnn0 GIF version

Theorem nn0ssxnn0 9050
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0ssxnn0 0 ⊆ ℕ0*

Proof of Theorem nn0ssxnn0
StepHypRef Expression
1 ssun1 3239 . 2 0 ⊆ (ℕ0 ∪ {+∞})
2 df-xnn0 9048 . 2 0* = (ℕ0 ∪ {+∞})
31, 2sseqtrri 3132 1 0 ⊆ ℕ0*
Colors of variables: wff set class
Syntax hints:  cun 3069  wss 3071  {csn 3527  +∞cpnf 7804  0cn0 8984  0*cxnn0 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-xnn0 9048
This theorem is referenced by:  nn0xnn0  9051  0xnn0  9053  nn0xnn0d  9056
  Copyright terms: Public domain W3C validator