![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ssxnn0 | GIF version |
Description: The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0ssxnn0 | ⊢ ℕ0 ⊆ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3163 | . 2 ⊢ ℕ0 ⊆ (ℕ0 ∪ {+∞}) | |
2 | df-xnn0 8737 | . 2 ⊢ ℕ0* = (ℕ0 ∪ {+∞}) | |
3 | 1, 2 | sseqtr4i 3059 | 1 ⊢ ℕ0 ⊆ ℕ0* |
Colors of variables: wff set class |
Syntax hints: ∪ cun 2997 ⊆ wss 2999 {csn 3446 +∞cpnf 7519 ℕ0cn0 8673 ℕ0*cxnn0 8736 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-xnn0 8737 |
This theorem is referenced by: nn0xnn0 8740 0xnn0 8742 nn0xnn0d 8745 |
Copyright terms: Public domain | W3C validator |