| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imimorbdc | GIF version | ||
| Description: Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| imimorbdc | ⊢ (DECID 𝜓 → (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 248 | . 2 ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒))) | |
| 2 | dfor2dc 896 | . . 3 ⊢ (DECID 𝜓 → ((𝜓 ∨ 𝜒) ↔ ((𝜓 → 𝜒) → 𝜒))) | |
| 3 | 2 | imbi2d 230 | . 2 ⊢ (DECID 𝜓 → ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒)))) |
| 4 | 1, 3 | bitr4id 199 | 1 ⊢ (DECID 𝜓 → (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |