| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 | ⊢ (𝜓 → 𝜒) |
| impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | impbid1 142 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 686 biorf 745 biorfi 747 pm4.72 828 con34bdc 872 notnotbdc 873 dfandc 885 imanst 889 dfordc 893 dfor2dc 896 pm4.79dc 904 orimdidc 907 pm5.54dc 919 pm5.62dc 947 bimsc1 965 modc 2088 euan 2101 exmoeudc 2108 nebidc 2447 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 elab3gf 2914 abidnf 2932 elsn2g 3656 difsn 3760 prel12 3802 dfnfc2 3858 intmin4 3903 dfiin2g 3950 elpw2g 4190 ordsucg 4539 ssrel 4752 ssrel2 4754 ssrelrel 4764 releldmb 4904 relelrnb 4905 cnveqb 5126 dmsnopg 5142 relcnvtr 5190 relcnvexb 5210 f1ocnvb 5521 ffvresb 5728 fconstfvm 5783 fnoprabg 6027 dfsmo2 6354 nntri2 6561 nntri1 6563 en1bg 6868 pw2f1odclem 6904 fieq0 7051 djulclb 7130 ismkvnex 7230 nngt1ne1 9044 znegclb 9378 iccneg 10083 fzsn 10160 fz1sbc 10190 fzofzp1b 10323 ceilqidz 10427 flqeqceilz 10429 reim0b 11046 rexanre 11404 dvdsext 12039 zob 12075 pc11 12527 pcz 12528 gsumval2 13101 issubg2m 13397 issubg4m 13401 ghmmhmb 13462 opprrngbg 13712 opprringbg 13714 issubrng2 13844 issubrg2 13875 eltg3 14401 bastop 14419 cnptoprest 14583 cos11 15197 zabsle1 15348 lgsabs1 15388 lgsquadlem2 15427 bj-om 15691 |
| Copyright terms: Public domain | W3C validator |