![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid2 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 | ⊢ (𝜓 → 𝜒) |
impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | impbid1 142 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimt 241 mtt 686 biorf 745 biorfi 747 pm4.72 828 con34bdc 872 notnotbdc 873 dfandc 885 imanst 889 dfordc 893 dfor2dc 896 pm4.79dc 904 orimdidc 907 pm5.54dc 919 pm5.62dc 947 bimsc1 965 modc 2085 euan 2098 exmoeudc 2105 nebidc 2444 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 elab3gf 2911 abidnf 2929 elsn2g 3652 difsn 3756 prel12 3798 dfnfc2 3854 intmin4 3899 dfiin2g 3946 elpw2g 4186 ordsucg 4535 ssrel 4748 ssrel2 4750 ssrelrel 4760 releldmb 4900 relelrnb 4901 cnveqb 5122 dmsnopg 5138 relcnvtr 5186 relcnvexb 5206 f1ocnvb 5515 ffvresb 5722 fconstfvm 5777 fnoprabg 6020 dfsmo2 6342 nntri2 6549 nntri1 6551 en1bg 6856 pw2f1odclem 6892 fieq0 7037 djulclb 7116 ismkvnex 7216 nngt1ne1 9019 znegclb 9353 iccneg 10058 fzsn 10135 fz1sbc 10165 fzofzp1b 10298 ceilqidz 10390 flqeqceilz 10392 reim0b 11009 rexanre 11367 dvdsext 12000 zob 12035 pc11 12472 pcz 12473 gsumval2 12983 issubg2m 13262 issubg4m 13266 ghmmhmb 13327 opprrngbg 13577 opprringbg 13579 issubrng2 13709 issubrg2 13740 eltg3 14236 bastop 14254 cnptoprest 14418 cos11 15029 zabsle1 15156 lgsabs1 15196 lgsquadlem2 15235 bj-om 15499 |
Copyright terms: Public domain | W3C validator |