| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 | ⊢ (𝜓 → 𝜒) |
| impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | impbid1 142 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 687 biorf 746 biorfi 748 pm4.72 829 con34bdc 873 notnotbdc 874 dfandc 886 imanst 890 dfordc 894 dfor2dc 897 pm4.79dc 905 orimdidc 908 pm5.54dc 920 pm5.62dc 948 bimsc1 966 modc 2097 euan 2110 exmoeudc 2117 nebidc 2456 cgsexg 2807 cgsex2g 2808 cgsex4g 2809 elab3gf 2923 abidnf 2941 elsn2g 3666 difsn 3770 prel12 3812 dfnfc2 3868 intmin4 3913 dfiin2g 3960 elpw2g 4200 ordsucg 4550 ssrel 4763 ssrel2 4765 ssrelrel 4775 releldmb 4915 relelrnb 4916 cnveqb 5138 dmsnopg 5154 relcnvtr 5202 relcnvexb 5222 f1ocnvb 5536 ffvresb 5743 fconstfvm 5802 fnoprabg 6046 dfsmo2 6373 nntri2 6580 nntri1 6582 en1bg 6892 pw2f1odclem 6931 fieq0 7078 djulclb 7157 ismkvnex 7257 nngt1ne1 9071 znegclb 9405 iccneg 10111 fzsn 10188 fz1sbc 10218 fzofzp1b 10357 ceilqidz 10461 flqeqceilz 10463 reim0b 11173 rexanre 11531 dvdsext 12166 zob 12202 pc11 12654 pcz 12655 gsumval2 13229 issubg2m 13525 issubg4m 13529 ghmmhmb 13590 opprrngbg 13840 opprringbg 13842 issubrng2 13972 issubrg2 14003 eltg3 14529 bastop 14547 cnptoprest 14711 cos11 15325 zabsle1 15476 lgsabs1 15516 lgsquadlem2 15555 bj-om 15873 |
| Copyright terms: Public domain | W3C validator |