| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 | ⊢ (𝜓 → 𝜒) |
| impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | impbid1 142 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 687 biorf 746 biorfi 748 pm4.72 829 con34bdc 873 notnotbdc 874 dfandc 886 imanst 890 dfordc 894 dfor2dc 897 pm4.79dc 905 orimdidc 908 pm5.54dc 920 pm5.62dc 948 bimsc1 966 modc 2098 euan 2111 exmoeudc 2118 nebidc 2457 cgsexg 2809 cgsex2g 2810 cgsex4g 2811 elab3gf 2927 abidnf 2945 elsn2g 3671 difsn 3776 prel12 3820 dfnfc2 3877 intmin4 3922 dfiin2g 3969 elpw2g 4211 ordsucg 4563 ssrel 4776 ssrel2 4778 ssrelrel 4788 releldmb 4929 relelrnb 4930 cnveqb 5152 dmsnopg 5168 relcnvtr 5216 relcnvexb 5236 f1ocnvb 5553 ffvresb 5761 fconstfvm 5820 fnoprabg 6064 dfsmo2 6391 nntri2 6598 nntri1 6600 en1bg 6910 pw2f1odclem 6951 fieq0 7099 djulclb 7178 ismkvnex 7278 nngt1ne1 9101 znegclb 9435 iccneg 10141 fzsn 10218 fz1sbc 10248 fzofzp1b 10389 ceilqidz 10493 flqeqceilz 10495 reim0b 11258 rexanre 11616 dvdsext 12251 zob 12287 pc11 12739 pcz 12740 gsumval2 13314 issubg2m 13610 issubg4m 13614 ghmmhmb 13675 opprrngbg 13925 opprringbg 13927 issubrng2 14057 issubrg2 14088 eltg3 14614 bastop 14632 cnptoprest 14796 cos11 15410 zabsle1 15561 lgsabs1 15601 lgsquadlem2 15640 bj-om 16042 |
| Copyright terms: Public domain | W3C validator |