| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 | ⊢ (𝜓 → 𝜒) |
| impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | impbid1 142 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 686 biorf 745 biorfi 747 pm4.72 828 con34bdc 872 notnotbdc 873 dfandc 885 imanst 889 dfordc 893 dfor2dc 896 pm4.79dc 904 orimdidc 907 pm5.54dc 919 pm5.62dc 947 bimsc1 965 modc 2096 euan 2109 exmoeudc 2116 nebidc 2455 cgsexg 2806 cgsex2g 2807 cgsex4g 2808 elab3gf 2922 abidnf 2940 elsn2g 3665 difsn 3769 prel12 3811 dfnfc2 3867 intmin4 3912 dfiin2g 3959 elpw2g 4199 ordsucg 4549 ssrel 4762 ssrel2 4764 ssrelrel 4774 releldmb 4914 relelrnb 4915 cnveqb 5137 dmsnopg 5153 relcnvtr 5201 relcnvexb 5221 f1ocnvb 5535 ffvresb 5742 fconstfvm 5801 fnoprabg 6045 dfsmo2 6372 nntri2 6579 nntri1 6581 en1bg 6891 pw2f1odclem 6930 fieq0 7077 djulclb 7156 ismkvnex 7256 nngt1ne1 9070 znegclb 9404 iccneg 10110 fzsn 10187 fz1sbc 10217 fzofzp1b 10355 ceilqidz 10459 flqeqceilz 10461 reim0b 11144 rexanre 11502 dvdsext 12137 zob 12173 pc11 12625 pcz 12626 gsumval2 13200 issubg2m 13496 issubg4m 13500 ghmmhmb 13561 opprrngbg 13811 opprringbg 13813 issubrng2 13943 issubrg2 13974 eltg3 14500 bastop 14518 cnptoprest 14682 cos11 15296 zabsle1 15447 lgsabs1 15487 lgsquadlem2 15526 bj-om 15835 |
| Copyright terms: Public domain | W3C validator |