Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbid2 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
Ref | Expression |
---|---|
impbid2.1 | ⊢ (𝜓 → 𝜒) |
impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 1, 2 | impbid1 141 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
4 | 3 | bicomd 140 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimt 240 mtt 675 biorf 734 biorfi 736 pm4.72 817 con34bdc 861 notnotbdc 862 dfandc 874 imanst 878 dfordc 882 dfor2dc 885 pm4.79dc 893 orimdidc 896 pm5.54dc 908 pm5.62dc 935 bimsc1 953 modc 2057 euan 2070 exmoeudc 2077 nebidc 2416 cgsexg 2761 cgsex2g 2762 cgsex4g 2763 elab3gf 2876 abidnf 2894 elsn2g 3609 difsn 3710 prel12 3751 dfnfc2 3807 intmin4 3852 dfiin2g 3899 elpw2g 4135 ordsucg 4479 ssrel 4692 ssrel2 4694 ssrelrel 4704 releldmb 4841 relelrnb 4842 cnveqb 5059 dmsnopg 5075 relcnvtr 5123 relcnvexb 5143 f1ocnvb 5446 ffvresb 5648 fconstfvm 5703 fnoprabg 5943 dfsmo2 6255 nntri2 6462 nntri1 6464 en1bg 6766 fieq0 6941 djulclb 7020 ismkvnex 7119 nngt1ne1 8892 znegclb 9224 iccneg 9925 fzsn 10001 fz1sbc 10031 fzofzp1b 10163 ceilqidz 10251 flqeqceilz 10253 reim0b 10804 rexanre 11162 dvdsext 11793 zob 11828 pc11 12262 pcz 12263 eltg3 12697 bastop 12715 cnptoprest 12879 cos11 13414 zabsle1 13540 lgsabs1 13580 bj-om 13819 |
Copyright terms: Public domain | W3C validator |