| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid2 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| impbid2.1 | ⊢ (𝜓 → 𝜒) |
| impbid2.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| impbid2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | impbid2.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 1, 2 | impbid1 142 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimt 241 mtt 689 biorf 749 biorfi 751 pm4.72 832 con34bdc 876 notnotbdc 877 dfandc 889 imanst 893 dfordc 897 dfor2dc 900 pm4.79dc 908 orimdidc 911 pm5.54dc 923 pm5.62dc 951 bimsc1 969 dfifp2dc 987 modc 2121 euan 2134 exmoeudc 2141 nebidc 2480 cgsexg 2835 cgsex2g 2836 cgsex4g 2837 elab3gf 2953 abidnf 2971 elsn2g 3699 difsn 3804 prel12 3848 dfnfc2 3905 intmin4 3950 dfiin2g 3997 elpw2g 4239 ordsucg 4593 ssrel 4806 ssrel2 4808 ssrelrel 4818 releldmb 4960 relelrnb 4961 cnveqb 5183 dmsnopg 5199 relcnvtr 5247 relcnvexb 5267 f1ocnvb 5585 ffvresb 5797 fconstfvm 5856 fnoprabg 6104 dfsmo2 6431 nntri2 6638 nntri1 6640 en1bg 6950 pw2f1odclem 6991 fieq0 7139 djulclb 7218 ismkvnex 7318 nngt1ne1 9141 znegclb 9475 iccneg 10181 fzsn 10258 fz1sbc 10288 fzofzp1b 10429 ceilqidz 10533 flqeqceilz 10535 reim0b 11368 rexanre 11726 dvdsext 12361 zob 12397 pc11 12849 pcz 12850 gsumval2 13425 issubg2m 13721 issubg4m 13725 ghmmhmb 13786 opprrngbg 14036 opprringbg 14038 issubrng2 14168 issubrg2 14199 eltg3 14725 bastop 14743 cnptoprest 14907 cos11 15521 zabsle1 15672 lgsabs1 15712 lgsquadlem2 15751 bj-om 16258 |
| Copyright terms: Public domain | W3C validator |