| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disamis | GIF version | ||
| Description: "Disamis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. (In Aristotelian notation, IAI-3: MiP and MaS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| disamis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
| disamis.min | ⊢ ∀𝑥(𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| disamis | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disamis.maj | . 2 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
| 2 | disamis.min | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜒) | |
| 3 | 2 | spi 1550 | . . 3 ⊢ (𝜑 → 𝜒) |
| 4 | 3 | anim1i 340 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜓)) |
| 5 | 1, 4 | eximii 1616 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bocardo 2158 |
| Copyright terms: Public domain | W3C validator |