![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximii | GIF version |
Description: Inference associated with eximi 1611. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1611 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: spimfv 1710 ax6evr 1716 spimed 1751 darii 2142 barbari 2144 festino 2148 baroco 2149 cesaro 2150 camestros 2151 datisi 2152 disamis 2153 felapton 2156 darapti 2157 dimatis 2159 fresison 2160 calemos 2161 fesapo 2162 bamalip 2163 vtoclf 2813 vtocl2 2815 vtocl3 2816 nalset 4159 el 4207 dtruarb 4220 snnex 4479 eusv2nf 4487 dtruex 4591 limom 4646 nninfct 12178 bj-axemptylem 15384 bj-nalset 15387 bj-d0clsepcl 15417 bj-omex2 15469 bj-nn0sucALT 15470 |
Copyright terms: Public domain | W3C validator |