![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximii | GIF version |
Description: Inference associated with eximi 1537. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1537 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 7 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1427 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax6evr 1639 spimed 1676 darii 2049 barbari 2051 festino 2055 baroco 2056 cesaro 2057 camestros 2058 datisi 2059 disamis 2060 felapton 2063 darapti 2064 dimatis 2066 fresison 2067 calemos 2068 fesapo 2069 bamalip 2070 vtoclf 2673 vtocl2 2675 vtocl3 2676 nalset 3975 el 4019 dtruarb 4032 snnex 4283 eusv2nf 4291 dtruex 4388 limom 4441 bj-axemptylem 12056 bj-nalset 12059 bj-d0clsepcl 12093 bj-omex2 12145 bj-nn0sucALT 12146 |
Copyright terms: Public domain | W3C validator |