Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximii | GIF version |
Description: Inference associated with eximi 1593. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1593 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: spimfv 1692 ax6evr 1698 spimed 1733 darii 2119 barbari 2121 festino 2125 baroco 2126 cesaro 2127 camestros 2128 datisi 2129 disamis 2130 felapton 2133 darapti 2134 dimatis 2136 fresison 2137 calemos 2138 fesapo 2139 bamalip 2140 vtoclf 2783 vtocl2 2785 vtocl3 2786 nalset 4119 el 4164 dtruarb 4177 snnex 4433 eusv2nf 4441 dtruex 4543 limom 4598 bj-axemptylem 13927 bj-nalset 13930 bj-d0clsepcl 13960 bj-omex2 14012 bj-nn0sucALT 14013 |
Copyright terms: Public domain | W3C validator |