Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximii | GIF version |
Description: Inference associated with eximi 1580. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1580 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: spimfv 1679 ax6evr 1685 spimed 1720 darii 2106 barbari 2108 festino 2112 baroco 2113 cesaro 2114 camestros 2115 datisi 2116 disamis 2117 felapton 2120 darapti 2121 dimatis 2123 fresison 2124 calemos 2125 fesapo 2126 bamalip 2127 vtoclf 2765 vtocl2 2767 vtocl3 2768 nalset 4094 el 4138 dtruarb 4151 snnex 4406 eusv2nf 4414 dtruex 4516 limom 4571 bj-axemptylem 13426 bj-nalset 13429 bj-d0clsepcl 13459 bj-omex2 13511 bj-nn0sucALT 13512 |
Copyright terms: Public domain | W3C validator |