| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximii | GIF version | ||
| Description: Inference associated with eximi 1622. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1622 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spimfv 1721 ax6evr 1727 spimed 1762 darii 2153 barbari 2155 festino 2159 baroco 2160 cesaro 2161 camestros 2162 datisi 2163 disamis 2164 felapton 2167 darapti 2168 dimatis 2170 fresison 2171 calemos 2172 fesapo 2173 bamalip 2174 ceqsexv2d 2811 vtoclf 2825 vtocl2 2827 vtocl3 2828 nalset 4173 el 4221 dtruarb 4234 snnex 4494 eusv2nf 4502 dtruex 4606 limom 4661 nninfct 12304 bj-axemptylem 15761 bj-nalset 15764 bj-d0clsepcl 15794 bj-omex2 15846 bj-nn0sucALT 15847 |
| Copyright terms: Public domain | W3C validator |