| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximii | GIF version | ||
| Description: Inference associated with eximi 1614. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1614 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spimfv 1713 ax6evr 1719 spimed 1754 darii 2145 barbari 2147 festino 2151 baroco 2152 cesaro 2153 camestros 2154 datisi 2155 disamis 2156 felapton 2159 darapti 2160 dimatis 2162 fresison 2163 calemos 2164 fesapo 2165 bamalip 2166 ceqsexv2d 2803 vtoclf 2817 vtocl2 2819 vtocl3 2820 nalset 4164 el 4212 dtruarb 4225 snnex 4484 eusv2nf 4492 dtruex 4596 limom 4651 nninfct 12233 bj-axemptylem 15622 bj-nalset 15625 bj-d0clsepcl 15655 bj-omex2 15707 bj-nn0sucALT 15708 |
| Copyright terms: Public domain | W3C validator |