| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximii | GIF version | ||
| Description: Inference associated with eximi 1646. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1646 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spimfv 1745 ax6evr 1751 spimed 1786 darii 2178 barbari 2180 festino 2184 baroco 2185 cesaro 2186 camestros 2187 datisi 2188 disamis 2189 felapton 2192 darapti 2193 dimatis 2195 fresison 2196 calemos 2197 fesapo 2198 bamalip 2199 ceqsexv2d 2840 vtoclf 2854 vtocl2 2856 vtocl3 2857 nalset 4213 el 4261 dtruarb 4274 snnex 4538 eusv2nf 4546 dtruex 4650 limom 4705 nninfct 12557 bj-axemptylem 16213 bj-nalset 16216 bj-d0clsepcl 16246 bj-omex2 16298 bj-nn0sucALT 16299 |
| Copyright terms: Public domain | W3C validator |