| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximii | GIF version | ||
| Description: Inference associated with eximi 1624. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1624 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spimfv 1723 ax6evr 1729 spimed 1764 darii 2155 barbari 2157 festino 2161 baroco 2162 cesaro 2163 camestros 2164 datisi 2165 disamis 2166 felapton 2169 darapti 2170 dimatis 2172 fresison 2173 calemos 2174 fesapo 2175 bamalip 2176 ceqsexv2d 2814 vtoclf 2828 vtocl2 2830 vtocl3 2831 nalset 4182 el 4230 dtruarb 4243 snnex 4503 eusv2nf 4511 dtruex 4615 limom 4670 nninfct 12437 bj-axemptylem 15966 bj-nalset 15969 bj-d0clsepcl 15999 bj-omex2 16051 bj-nn0sucALT 16052 |
| Copyright terms: Public domain | W3C validator |