ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelall GIF version

Theorem elnelall 2447
Description: A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
elnelall (𝐴𝐵 → (𝐴𝐵𝜑))

Proof of Theorem elnelall
StepHypRef Expression
1 df-nel 2436 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
2 pm2.24 616 . 2 (𝐴𝐵 → (¬ 𝐴𝐵𝜑))
31, 2syl5bi 151 1 (𝐴𝐵 → (𝐴𝐵𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2141  wnel 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-nel 2436
This theorem is referenced by:  xnn0lenn0nn0  9822
  Copyright terms: Public domain W3C validator