| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nelcon3d | GIF version | ||
| Description: Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| nelcon3d.1 | ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷)) | 
| Ref | Expression | 
|---|---|
| nelcon3d | ⊢ (𝜑 → (𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nelcon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐶 ∈ 𝐷)) | |
| 2 | 1 | con3d 632 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐷 → ¬ 𝐴 ∈ 𝐵)) | 
| 3 | df-nel 2463 | . 2 ⊢ (𝐶 ∉ 𝐷 ↔ ¬ 𝐶 ∈ 𝐷) | |
| 4 | df-nel 2463 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 5 | 2, 3, 4 | 3imtr4g 205 | 1 ⊢ (𝜑 → (𝐶 ∉ 𝐷 → 𝐴 ∉ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 ∉ wnel 2462 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-nel 2463 | 
| This theorem is referenced by: isnmgm 13003 | 
| Copyright terms: Public domain | W3C validator |