Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0lenn0nn0 | GIF version |
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
xnn0lenn0nn0 | ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9200 | . . 3 ⊢ (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0 ∨ 𝑀 = +∞)) | |
2 | 2a1 25 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) | |
3 | breq1 3992 | . . . . . . 7 ⊢ (𝑀 = +∞ → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) | |
4 | 3 | adantr 274 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) |
5 | nn0re 9144 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | 5 | rexrd 7969 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
7 | xgepnf 9773 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) | |
8 | 6, 7 | syl 14 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) |
9 | pnfnre 7961 | . . . . . . . . 9 ⊢ +∞ ∉ ℝ | |
10 | eleq1 2233 | . . . . . . . . . . 11 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
11 | nn0re 9144 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
12 | elnelall 2447 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) | |
13 | 11, 12 | syl 14 | . . . . . . . . . . 11 ⊢ (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) |
14 | 10, 13 | syl6bi 162 | . . . . . . . . . 10 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))) |
15 | 14 | com13 80 | . . . . . . . . 9 ⊢ (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))) |
16 | 9, 15 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)) |
17 | 8, 16 | sylbid 149 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
18 | 17 | adantl 275 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
19 | 4, 18 | sylbid 149 | . . . . 5 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
20 | 19 | ex 114 | . . . 4 ⊢ (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
21 | 2, 20 | jaoi 711 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∨ 𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
22 | 1, 21 | sylbi 120 | . 2 ⊢ (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
23 | 22 | 3imp 1188 | 1 ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∉ wnel 2435 class class class wbr 3989 ℝcr 7773 +∞cpnf 7951 ℝ*cxr 7953 ≤ cle 7955 ℕ0cn0 9135 ℕ0*cxnn0 9198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 df-n0 9136 df-xnn0 9199 |
This theorem is referenced by: xnn0le2is012 9823 |
Copyright terms: Public domain | W3C validator |