ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0lenn0nn0 GIF version

Theorem xnn0lenn0nn0 9801
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 9179 . . 3 (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0𝑀 = +∞))
2 2a1 25 . . . 4 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
3 breq1 3985 . . . . . . 7 (𝑀 = +∞ → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
43adantr 274 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
5 nn0re 9123 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65rexrd 7948 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
7 xgepnf 9752 . . . . . . . . 9 (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁𝑁 = +∞))
86, 7syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑁 = +∞))
9 pnfnre 7940 . . . . . . . . 9 +∞ ∉ ℝ
10 eleq1 2229 . . . . . . . . . . 11 (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
11 nn0re 9123 . . . . . . . . . . . 12 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
12 elnelall 2443 . . . . . . . . . . . 12 (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1311, 12syl 14 . . . . . . . . . . 11 (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1410, 13syl6bi 162 . . . . . . . . . 10 (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)))
1514com13 80 . . . . . . . . 9 (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)))
169, 15ax-mp 5 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))
178, 16sylbid 149 . . . . . . 7 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
1817adantl 275 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
194, 18sylbid 149 . . . . 5 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ∈ ℕ0))
2019ex 114 . . . 4 (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
212, 20jaoi 706 . . 3 ((𝑀 ∈ ℕ0𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
221, 21sylbi 120 . 2 (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
23223imp 1183 1 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  wnel 2431   class class class wbr 3982  cr 7752  +∞cpnf 7930  *cxr 7932  cle 7934  0cn0 9114  0*cxnn0 9177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-inn 8858  df-n0 9115  df-xnn0 9178
This theorem is referenced by:  xnn0le2is012  9802
  Copyright terms: Public domain W3C validator