ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0lenn0nn0 GIF version

Theorem xnn0lenn0nn0 9931
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 9305 . . 3 (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0𝑀 = +∞))
2 2a1 25 . . . 4 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
3 breq1 4032 . . . . . . 7 (𝑀 = +∞ → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
43adantr 276 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
5 nn0re 9249 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65rexrd 8069 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
7 xgepnf 9882 . . . . . . . . 9 (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁𝑁 = +∞))
86, 7syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑁 = +∞))
9 pnfnre 8061 . . . . . . . . 9 +∞ ∉ ℝ
10 eleq1 2256 . . . . . . . . . . 11 (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
11 nn0re 9249 . . . . . . . . . . . 12 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
12 elnelall 2471 . . . . . . . . . . . 12 (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1311, 12syl 14 . . . . . . . . . . 11 (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1410, 13biimtrdi 163 . . . . . . . . . 10 (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)))
1514com13 80 . . . . . . . . 9 (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)))
169, 15ax-mp 5 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))
178, 16sylbid 150 . . . . . . 7 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
1817adantl 277 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
194, 18sylbid 150 . . . . 5 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ∈ ℕ0))
2019ex 115 . . . 4 (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
212, 20jaoi 717 . . 3 ((𝑀 ∈ ℕ0𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
221, 21sylbi 121 . 2 (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
23223imp 1195 1 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wnel 2459   class class class wbr 4029  cr 7871  +∞cpnf 8051  *cxr 8053  cle 8055  0cn0 9240  0*cxnn0 9303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-inn 8983  df-n0 9241  df-xnn0 9304
This theorem is referenced by:  xnn0le2is012  9932
  Copyright terms: Public domain W3C validator