| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0lenn0nn0 | GIF version | ||
| Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| xnn0lenn0nn0 | ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 9314 | . . 3 ⊢ (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0 ∨ 𝑀 = +∞)) | |
| 2 | 2a1 25 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) | |
| 3 | breq1 4036 | . . . . . . 7 ⊢ (𝑀 = +∞ → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ +∞ ≤ 𝑁)) |
| 5 | nn0re 9258 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 6 | 5 | rexrd 8076 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
| 7 | xgepnf 9891 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) | |
| 8 | 6, 7 | syl 14 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 ↔ 𝑁 = +∞)) |
| 9 | pnfnre 8068 | . . . . . . . . 9 ⊢ +∞ ∉ ℝ | |
| 10 | eleq1 2259 | . . . . . . . . . . 11 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
| 11 | nn0re 9258 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
| 12 | elnelall 2474 | . . . . . . . . . . . 12 ⊢ (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) | |
| 13 | 11, 12 | syl 14 | . . . . . . . . . . 11 ⊢ (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)) |
| 14 | 10, 13 | biimtrdi 163 | . . . . . . . . . 10 ⊢ (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))) |
| 15 | 14 | com13 80 | . . . . . . . . 9 ⊢ (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))) |
| 16 | 9, 15 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)) |
| 17 | 8, 16 | sylbid 150 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
| 18 | 17 | adantl 277 | . . . . . 6 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
| 19 | 4, 18 | sylbid 150 | . . . . 5 ⊢ ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0)) |
| 20 | 19 | ex 115 | . . . 4 ⊢ (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
| 21 | 2, 20 | jaoi 717 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∨ 𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
| 22 | 1, 21 | sylbi 121 | . 2 ⊢ (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀 ≤ 𝑁 → 𝑀 ∈ ℕ0))) |
| 23 | 22 | 3imp 1195 | 1 ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∉ wnel 2462 class class class wbr 4033 ℝcr 7878 +∞cpnf 8058 ℝ*cxr 8060 ≤ cle 8062 ℕ0cn0 9249 ℕ0*cxnn0 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 ax-pre-ltirr 7991 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 df-n0 9250 df-xnn0 9313 |
| This theorem is referenced by: xnn0le2is012 9941 |
| Copyright terms: Public domain | W3C validator |