ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0lenn0nn0 GIF version

Theorem xnn0lenn0nn0 9957
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 9331 . . 3 (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0𝑀 = +∞))
2 2a1 25 . . . 4 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
3 breq1 4037 . . . . . . 7 (𝑀 = +∞ → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
43adantr 276 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
5 nn0re 9275 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65rexrd 8093 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
7 xgepnf 9908 . . . . . . . . 9 (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁𝑁 = +∞))
86, 7syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑁 = +∞))
9 pnfnre 8085 . . . . . . . . 9 +∞ ∉ ℝ
10 eleq1 2259 . . . . . . . . . . 11 (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
11 nn0re 9275 . . . . . . . . . . . 12 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
12 elnelall 2474 . . . . . . . . . . . 12 (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1311, 12syl 14 . . . . . . . . . . 11 (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1410, 13biimtrdi 163 . . . . . . . . . 10 (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)))
1514com13 80 . . . . . . . . 9 (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)))
169, 15ax-mp 5 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))
178, 16sylbid 150 . . . . . . 7 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
1817adantl 277 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
194, 18sylbid 150 . . . . 5 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ∈ ℕ0))
2019ex 115 . . . 4 (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
212, 20jaoi 717 . . 3 ((𝑀 ∈ ℕ0𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
221, 21sylbi 121 . 2 (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
23223imp 1195 1 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wnel 2462   class class class wbr 4034  cr 7895  +∞cpnf 8075  *cxr 8077  cle 8079  0cn0 9266  0*cxnn0 9329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-rnegex 8005  ax-pre-ltirr 8008
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-inn 9008  df-n0 9267  df-xnn0 9330
This theorem is referenced by:  xnn0le2is012  9958
  Copyright terms: Public domain W3C validator