ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 611
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 607 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 605
This theorem is referenced by:  pm2.24d  612  pm2.53  712  pm2.82  802  pm4.81dc  894  dedlema  954  alexim  1622  eqneqall  2334  elnelall  2431  sotritric  4279  ltxrlt  7922  zltnle  9192  elfzonlteqm1  10087  qltnle  10123  hashfzp1  10675  dfgcd2  11869  bj-fast  13254
  Copyright terms: Public domain W3C validator