ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 611
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 607 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 605
This theorem is referenced by:  pm2.24d  612  pm2.53  712  pm2.82  802  pm4.81dc  898  dedlema  959  alexim  1633  eqneqall  2346  elnelall  2443  sotritric  4302  ltxrlt  7964  zltnle  9237  elfzonlteqm1  10145  qltnle  10181  hashfzp1  10737  dfgcd2  11947  oddprmdvds  12284  bj-fast  13622  nnnotnotr  13872
  Copyright terms: Public domain W3C validator