| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.24 | GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 30 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.24d 623 pm2.53 724 pm2.82 814 pm4.81dc 910 dedlema 972 alexim 1669 eqneqall 2387 elnelall 2484 sotritric 4375 ltxrlt 8145 zltnle 9425 elfzonlteqm1 10346 qltnle 10393 hashfzp1 10976 dfgcd2 12379 oddprmdvds 12721 2lgsoddprm 15634 bj-fast 15751 nnnotnotr 16000 |
| Copyright terms: Public domain | W3C validator |