| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.24 | GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 620 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 30 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 618 |
| This theorem is referenced by: pm2.24d 625 pm2.53 727 pm2.82 817 pm4.81dc 913 dedlema 975 ifp2 986 alexim 1691 eqneqall 2410 elnelall 2507 sotritric 4415 ltxrlt 8220 zltnle 9500 elfzonlteqm1 10424 qltnle 10471 hashfzp1 11054 swrdccat3blem 11279 dfgcd2 12543 oddprmdvds 12885 2lgsoddprm 15800 bj-fast 16129 nnnotnotr 16377 |
| Copyright terms: Public domain | W3C validator |