ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 622
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 618 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 616
This theorem is referenced by:  pm2.24d  623  pm2.53  724  pm2.82  814  pm4.81dc  910  dedlema  972  alexim  1669  eqneqall  2387  elnelall  2484  sotritric  4375  ltxrlt  8145  zltnle  9425  elfzonlteqm1  10346  qltnle  10393  hashfzp1  10976  dfgcd2  12379  oddprmdvds  12721  2lgsoddprm  15634  bj-fast  15751  nnnotnotr  16000
  Copyright terms: Public domain W3C validator