Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.24 | GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 607 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 30 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 605 |
This theorem is referenced by: pm2.24d 612 pm2.53 712 pm2.82 802 pm4.81dc 898 dedlema 959 alexim 1633 eqneqall 2346 elnelall 2443 sotritric 4302 ltxrlt 7964 zltnle 9237 elfzonlteqm1 10145 qltnle 10181 hashfzp1 10737 dfgcd2 11947 oddprmdvds 12284 bj-fast 13622 nnnotnotr 13872 |
Copyright terms: Public domain | W3C validator |