ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 622
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 618 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 616
This theorem is referenced by:  pm2.24d  623  pm2.53  723  pm2.82  813  pm4.81dc  909  dedlema  971  alexim  1656  eqneqall  2374  elnelall  2471  sotritric  4355  ltxrlt  8085  zltnle  9363  elfzonlteqm1  10277  qltnle  10313  hashfzp1  10895  dfgcd2  12151  oddprmdvds  12492  bj-fast  15233  nnnotnotr  15482
  Copyright terms: Public domain W3C validator