Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.24 | GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 607 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 30 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 605 |
This theorem is referenced by: pm2.24d 612 pm2.53 712 pm2.82 802 pm4.81dc 894 dedlema 954 alexim 1622 eqneqall 2334 elnelall 2431 sotritric 4279 ltxrlt 7922 zltnle 9192 elfzonlteqm1 10087 qltnle 10123 hashfzp1 10675 dfgcd2 11869 bj-fast 13254 |
Copyright terms: Public domain | W3C validator |