| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.24 | GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 620 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 30 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 618 |
| This theorem is referenced by: pm2.24d 625 pm2.53 726 pm2.82 816 pm4.81dc 912 dedlema 974 alexim 1671 eqneqall 2390 elnelall 2487 sotritric 4392 ltxrlt 8180 zltnle 9460 elfzonlteqm1 10383 qltnle 10430 hashfzp1 11013 swrdccat3blem 11237 dfgcd2 12501 oddprmdvds 12843 2lgsoddprm 15757 bj-fast 16015 nnnotnotr 16263 |
| Copyright terms: Public domain | W3C validator |