ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 621
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 617 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 615
This theorem is referenced by:  pm2.24d  622  pm2.53  722  pm2.82  812  pm4.81dc  908  dedlema  969  alexim  1645  eqneqall  2357  elnelall  2454  sotritric  4324  ltxrlt  8022  zltnle  9298  elfzonlteqm1  10209  qltnle  10245  hashfzp1  10803  dfgcd2  12014  oddprmdvds  12351  bj-fast  14463  nnnotnotr  14712
  Copyright terms: Public domain W3C validator