Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.24 | GIF version |
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 612 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | com12 30 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 610 |
This theorem is referenced by: pm2.24d 617 pm2.53 717 pm2.82 807 pm4.81dc 903 dedlema 964 alexim 1638 eqneqall 2350 elnelall 2447 sotritric 4309 ltxrlt 7985 zltnle 9258 elfzonlteqm1 10166 qltnle 10202 hashfzp1 10759 dfgcd2 11969 oddprmdvds 12306 bj-fast 13776 nnnotnotr 14025 |
Copyright terms: Public domain | W3C validator |