ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 616
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 612 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in2 610
This theorem is referenced by:  pm2.24d  617  pm2.53  717  pm2.82  807  pm4.81dc  903  dedlema  964  alexim  1638  eqneqall  2350  elnelall  2447  sotritric  4309  ltxrlt  7985  zltnle  9258  elfzonlteqm1  10166  qltnle  10202  hashfzp1  10759  dfgcd2  11969  oddprmdvds  12306  bj-fast  13776  nnnotnotr  14025
  Copyright terms: Public domain W3C validator