| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.24 | GIF version | ||
| Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.24 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 2 | 1 | com12 30 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.24d 623 pm2.53 723 pm2.82 813 pm4.81dc 909 dedlema 971 alexim 1659 eqneqall 2377 elnelall 2474 sotritric 4360 ltxrlt 8109 zltnle 9389 elfzonlteqm1 10303 qltnle 10350 hashfzp1 10933 dfgcd2 12206 oddprmdvds 12548 2lgsoddprm 15438 bj-fast 15471 nnnotnotr 15720 |
| Copyright terms: Public domain | W3C validator |