ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 584
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 580 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in2 578
This theorem is referenced by:  pm2.24d  585  pm2.53  674  pm2.82  759  pm4.81dc  848  dedlema  911  alexim  1577  eqneqall  2259  sotritric  4114  ltxrlt  7453  zltnle  8690  elfzonlteqm1  9508  qltnle  9544  hashfzp1  10065  dfgcd2  10781
  Copyright terms: Public domain W3C validator