ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.24 GIF version

Theorem pm2.24 593
Description: Theorem *2.24 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.24 (𝜑 → (¬ 𝜑𝜓))

Proof of Theorem pm2.24
StepHypRef Expression
1 pm2.21 589 . 2 𝜑 → (𝜑𝜓))
21com12 30 1 (𝜑 → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in2 587
This theorem is referenced by:  pm2.24d  594  pm2.53  694  pm2.82  784  pm4.81dc  876  dedlema  936  alexim  1607  eqneqall  2292  elnelall  2389  sotritric  4206  ltxrlt  7754  zltnle  9004  elfzonlteqm1  9880  qltnle  9916  hashfzp1  10463  dfgcd2  11548  bj-fast  12645
  Copyright terms: Public domain W3C validator