![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeqan12rd | GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
eqeqan12rd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12rd.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12rd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeqan12rd.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2193 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
4 | 3 | ancoms 268 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: omp1eomlem 7096 |
Copyright terms: Public domain | W3C validator |