Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-17 | GIF version |
Description: Axiom to quantify a
variable over a formula in which it does not occur.
Axiom C5 in [Megill] p. 444 (p. 11 of the
preprint). Also appears as
Axiom B6 (p. 75) of system S2 of [Tarski]
p. 77 and Axiom C5-1 of
[Monk2] p. 113.
(Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-17 | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wal 1346 | . 2 wff ∀𝑥𝜑 |
4 | 1, 3 | wi 4 | 1 wff (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
This axiom is referenced by: a17d 1520 nfv 1521 exlimiv 1591 equid 1694 ax16 1806 dvelimfALT2 1810 exlimdv 1812 ax11a2 1814 albidv 1817 exbidv 1818 ax11v 1820 ax11ev 1821 ax16i 1851 ax16ALT 1852 equvin 1856 19.9v 1864 19.21v 1866 alrimiv 1867 alrimdv 1869 alimdv 1872 eximdv 1873 19.23v 1876 pm11.53 1888 19.27v 1892 19.28v 1893 19.41v 1895 19.42v 1899 cbvalv 1910 cbvexv 1911 cbvexdh 1919 nexdv 1929 sbhb 1933 hbsbv 1934 sbco2vh 1938 nfsb 1939 equsb3lem 1943 equsb3 1944 sbn 1945 sbim 1946 sbor 1947 sban 1948 sbco3 1967 nfsbt 1969 sb9 1972 sbcom2v2 1979 sbcom2 1980 dfsb7 1984 sbid2v 1989 sbelx 1990 sbal 1993 sbal1 1995 sbex 1997 exsb 2001 dvelimALT 2003 dvelim 2010 dvelimor 2011 euf 2024 sb8euh 2042 euorv 2046 euex 2049 euanv 2076 mo4f 2079 moim 2083 moimv 2085 moanim 2093 mopick 2097 2eu4 2112 cleljust 2147 elsb1 2148 elsb2 2149 dveel1 2150 dveel2 2151 cleqh 2270 abeq2 2279 mpteq12 4072 bj-ex 13797 bj-inex 13942 |
Copyright terms: Public domain | W3C validator |