Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-17 | GIF version |
Description: Axiom to quantify a
variable over a formula in which it does not occur.
Axiom C5 in [Megill] p. 444 (p. 11 of the
preprint). Also appears as
Axiom B6 (p. 75) of system S2 of [Tarski]
p. 77 and Axiom C5-1 of
[Monk2] p. 113.
(Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-17 | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wal 1341 | . 2 wff ∀𝑥𝜑 |
4 | 1, 3 | wi 4 | 1 wff (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
This axiom is referenced by: a17d 1515 nfv 1516 exlimiv 1586 equid 1689 ax16 1801 dvelimfALT2 1805 exlimdv 1807 ax11a2 1809 albidv 1812 exbidv 1813 ax11v 1815 ax11ev 1816 ax16i 1846 ax16ALT 1847 equvin 1851 19.9v 1859 19.21v 1861 alrimiv 1862 alrimdv 1864 alimdv 1867 eximdv 1868 19.23v 1871 pm11.53 1883 19.27v 1887 19.28v 1888 19.41v 1890 19.42v 1894 cbvalv 1905 cbvexv 1906 cbvexdh 1914 nexdv 1924 sbhb 1928 hbsbv 1929 sbco2vh 1933 nfsb 1934 equsb3lem 1938 equsb3 1939 sbn 1940 sbim 1941 sbor 1942 sban 1943 sbco3 1962 nfsbt 1964 sb9 1967 sbcom2v2 1974 sbcom2 1975 dfsb7 1979 sbid2v 1984 sbelx 1985 sbal 1988 sbal1 1990 sbex 1992 exsb 1996 dvelimALT 1998 dvelim 2005 dvelimor 2006 euf 2019 sb8euh 2037 euorv 2041 euex 2044 euanv 2071 mo4f 2074 moim 2078 moimv 2080 moanim 2088 mopick 2092 2eu4 2107 cleljust 2142 elsb1 2143 elsb2 2144 dveel1 2145 dveel2 2146 cleqh 2265 abeq2 2274 mpteq12 4064 bj-ex 13603 bj-inex 13749 |
Copyright terms: Public domain | W3C validator |