![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-17 | GIF version |
Description: Axiom to quantify a
variable over a formula in which it does not occur.
Axiom C5 in [Megill] p. 444 (p. 11 of the
preprint). Also appears as
Axiom B6 (p. 75) of system S2 of [Tarski]
p. 77 and Axiom C5-1 of
[Monk2] p. 113.
(Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-17 | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | 1, 2 | wal 1362 | . 2 wff ∀𝑥𝜑 |
4 | 1, 3 | wi 4 | 1 wff (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
This axiom is referenced by: a17d 1538 nfv 1539 exlimiv 1609 equid 1712 ax16 1824 dvelimfALT2 1828 exlimdv 1830 ax11a2 1832 albidv 1835 exbidv 1836 ax11v 1838 ax11ev 1839 ax16i 1869 ax16ALT 1870 equvin 1874 19.9v 1882 19.21v 1884 alrimiv 1885 alrimdv 1887 alimdv 1890 eximdv 1891 19.23v 1894 pm11.53 1907 19.27v 1911 19.28v 1912 19.41v 1914 19.42v 1918 cbvalv 1929 cbvexv 1930 cbvexdh 1938 nexdv 1952 sbhb 1956 hbsbv 1957 sbco2vh 1961 nfsb 1962 equsb3lem 1966 equsb3 1967 sbn 1968 sbim 1969 sbor 1970 sban 1971 sbco3 1990 nfsbt 1992 sb9 1995 sbcom2v2 2002 sbcom2 2003 dfsb7 2007 sbid2v 2012 sbelx 2013 sbal 2016 sbal1 2018 sbex 2020 exsb 2024 dvelimALT 2026 dvelim 2033 dvelimor 2034 euf 2047 sb8euh 2065 euorv 2069 euex 2072 euanv 2099 mo4f 2102 moim 2106 moimv 2108 moanim 2116 mopick 2120 2eu4 2135 cleljust 2170 elsb1 2171 elsb2 2172 dveel1 2173 dveel2 2174 cleqh 2293 abeq2 2302 mpteq12 4112 bj-ex 15254 bj-inex 15399 |
Copyright terms: Public domain | W3C validator |