ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eomlem GIF version

Theorem omp1eomlem 6931
Description: Lemma for omp1eom 6932. (Contributed by Jim Kingdon, 11-Jul-2023.)
Hypotheses
Ref Expression
omp1eom.f 𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
omp1eom.s 𝑆 = (𝑥 ∈ ω ↦ suc 𝑥)
omp1eom.g 𝐺 = case(𝑆, ( I ↾ 1o))
Assertion
Ref Expression
omp1eomlem 𝐹:ω–1-1-onto→(ω ⊔ 1o)
Distinct variable group:   𝑥,𝐺
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem omp1eomlem
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omp1eom.f . . 3 𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
2 el1o 6288 . . . . . . 7 (𝑥 ∈ 1o𝑥 = ∅)
32biimpri 132 . . . . . 6 (𝑥 = ∅ → 𝑥 ∈ 1o)
43adantl 273 . . . . 5 (((⊤ ∧ 𝑥 ∈ ω) ∧ 𝑥 = ∅) → 𝑥 ∈ 1o)
5 djurcl 6889 . . . . 5 (𝑥 ∈ 1o → (inr‘𝑥) ∈ (ω ⊔ 1o))
64, 5syl 14 . . . 4 (((⊤ ∧ 𝑥 ∈ ω) ∧ 𝑥 = ∅) → (inr‘𝑥) ∈ (ω ⊔ 1o))
7 nnpredcl 4496 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ ω)
87ad2antlr 478 . . . . 5 (((⊤ ∧ 𝑥 ∈ ω) ∧ ¬ 𝑥 = ∅) → 𝑥 ∈ ω)
9 djulcl 6888 . . . . 5 ( 𝑥 ∈ ω → (inl‘ 𝑥) ∈ (ω ⊔ 1o))
108, 9syl 14 . . . 4 (((⊤ ∧ 𝑥 ∈ ω) ∧ ¬ 𝑥 = ∅) → (inl‘ 𝑥) ∈ (ω ⊔ 1o))
11 nndceq0 4491 . . . . 5 (𝑥 ∈ ω → DECID 𝑥 = ∅)
1211adantl 273 . . . 4 ((⊤ ∧ 𝑥 ∈ ω) → DECID 𝑥 = ∅)
136, 10, 12ifcldadc 3467 . . 3 ((⊤ ∧ 𝑥 ∈ ω) → if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) ∈ (ω ⊔ 1o))
14 omp1eom.s . . . . . . . 8 𝑆 = (𝑥 ∈ ω ↦ suc 𝑥)
15 peano2 4469 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
1614, 15fmpti 5526 . . . . . . 7 𝑆:ω⟶ω
1716a1i 9 . . . . . 6 (⊤ → 𝑆:ω⟶ω)
18 f1oi 5361 . . . . . . . . 9 ( I ↾ 1o):1o1-1-onto→1o
19 f1of 5323 . . . . . . . . 9 (( I ↾ 1o):1o1-1-onto→1o → ( I ↾ 1o):1o⟶1o)
2018, 19ax-mp 7 . . . . . . . 8 ( I ↾ 1o):1o⟶1o
21 1onn 6370 . . . . . . . . 9 1o ∈ ω
22 omelon 4482 . . . . . . . . . 10 ω ∈ On
2322onelssi 4311 . . . . . . . . 9 (1o ∈ ω → 1o ⊆ ω)
2421, 23ax-mp 7 . . . . . . . 8 1o ⊆ ω
25 fss 5242 . . . . . . . 8 ((( I ↾ 1o):1o⟶1o ∧ 1o ⊆ ω) → ( I ↾ 1o):1o⟶ω)
2620, 24, 25mp2an 420 . . . . . . 7 ( I ↾ 1o):1o⟶ω
2726a1i 9 . . . . . 6 (⊤ → ( I ↾ 1o):1o⟶ω)
2817, 27casef 6925 . . . . 5 (⊤ → case(𝑆, ( I ↾ 1o)):(ω ⊔ 1o)⟶ω)
29 omp1eom.g . . . . . 6 𝐺 = case(𝑆, ( I ↾ 1o))
3029feq1i 5223 . . . . 5 (𝐺:(ω ⊔ 1o)⟶ω ↔ case(𝑆, ( I ↾ 1o)):(ω ⊔ 1o)⟶ω)
3128, 30sylibr 133 . . . 4 (⊤ → 𝐺:(ω ⊔ 1o)⟶ω)
3231ffvelrnda 5509 . . 3 ((⊤ ∧ 𝑦 ∈ (ω ⊔ 1o)) → (𝐺𝑦) ∈ ω)
33 ffn 5230 . . . . . . . . . . . . . . . 16 (𝑆:ω⟶ω → 𝑆 Fn ω)
3416, 33mp1i 10 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑆 Fn ω)
35 ffun 5233 . . . . . . . . . . . . . . . 16 (( I ↾ 1o):1o⟶1o → Fun ( I ↾ 1o))
3620, 35mp1i 10 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → Fun ( I ↾ 1o))
37 simpl 108 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑧 ∈ ω)
3834, 36, 37caseinl 6928 . . . . . . . . . . . . . 14 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (case(𝑆, ( I ↾ 1o))‘(inl‘𝑧)) = (𝑆𝑧))
3929eqcomi 2119 . . . . . . . . . . . . . . . 16 case(𝑆, ( I ↾ 1o)) = 𝐺
4039a1i 9 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → case(𝑆, ( I ↾ 1o)) = 𝐺)
41 simpr 109 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑦 = (inl‘𝑧))
4241eqcomd 2120 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (inl‘𝑧) = 𝑦)
4340, 42fveq12d 5382 . . . . . . . . . . . . . 14 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (case(𝑆, ( I ↾ 1o))‘(inl‘𝑧)) = (𝐺𝑦))
44 peano2 4469 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
45 suceq 4284 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
4645, 14fvmptg 5451 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝑆𝑧) = suc 𝑧)
4744, 46mpdan 415 . . . . . . . . . . . . . . 15 (𝑧 ∈ ω → (𝑆𝑧) = suc 𝑧)
4847adantr 272 . . . . . . . . . . . . . 14 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝑆𝑧) = suc 𝑧)
4938, 43, 483eqtr3d 2155 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝐺𝑦) = suc 𝑧)
50 peano3 4470 . . . . . . . . . . . . . 14 (𝑧 ∈ ω → suc 𝑧 ≠ ∅)
5150adantr 272 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → suc 𝑧 ≠ ∅)
5249, 51eqnetrd 2306 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝐺𝑦) ≠ ∅)
5352adantl 273 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝐺𝑦) ≠ ∅)
5453necomd 2368 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ∅ ≠ (𝐺𝑦))
5554neneqd 2303 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ¬ ∅ = (𝐺𝑦))
56 simplr 502 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 = ∅)
5756eqeq1d 2123 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺𝑦) ↔ ∅ = (𝐺𝑦)))
5855, 57mtbird 645 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ¬ 𝑥 = (𝐺𝑦))
59 djune 6915 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (inl‘𝑧) ≠ (inr‘𝑥))
6059elvd 2662 . . . . . . . . . . 11 (𝑧 ∈ V → (inl‘𝑧) ≠ (inr‘𝑥))
6160elv 2661 . . . . . . . . . 10 (inl‘𝑧) ≠ (inr‘𝑥)
6261neii 2284 . . . . . . . . 9 ¬ (inl‘𝑧) = (inr‘𝑥)
63 simprr 504 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑦 = (inl‘𝑧))
64 simpr 109 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
6564iftrued 3447 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) → if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) = (inr‘𝑥))
6665adantr 272 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) = (inr‘𝑥))
6763, 66eqeq12d 2129 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) ↔ (inl‘𝑧) = (inr‘𝑥)))
6862, 67mtbiri 647 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ¬ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
6958, 682falsed 674 . . . . . . 7 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
7069rexlimdvaa 2524 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))))
71 simplr 502 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → 𝑥 = ∅)
7229a1i 9 . . . . . . . . . . . 12 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → 𝐺 = case(𝑆, ( I ↾ 1o)))
73 simpr 109 . . . . . . . . . . . 12 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → 𝑦 = (inr‘𝑧))
7472, 73fveq12d 5382 . . . . . . . . . . 11 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → (𝐺𝑦) = (case(𝑆, ( I ↾ 1o))‘(inr‘𝑧)))
7514funmpt2 5120 . . . . . . . . . . . . . 14 Fun 𝑆
7675a1i 9 . . . . . . . . . . . . 13 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → Fun 𝑆)
77 fnresi 5198 . . . . . . . . . . . . . 14 ( I ↾ 1o) Fn 1o
7877a1i 9 . . . . . . . . . . . . 13 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → ( I ↾ 1o) Fn 1o)
79 simpl 108 . . . . . . . . . . . . 13 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → 𝑧 ∈ 1o)
8076, 78, 79caseinr 6929 . . . . . . . . . . . 12 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → (case(𝑆, ( I ↾ 1o))‘(inr‘𝑧)) = (( I ↾ 1o)‘𝑧))
81 fvresi 5567 . . . . . . . . . . . . 13 (𝑧 ∈ 1o → (( I ↾ 1o)‘𝑧) = 𝑧)
8281adantr 272 . . . . . . . . . . . 12 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → (( I ↾ 1o)‘𝑧) = 𝑧)
8380, 82eqtrd 2147 . . . . . . . . . . 11 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → (case(𝑆, ( I ↾ 1o))‘(inr‘𝑧)) = 𝑧)
84 el1o 6288 . . . . . . . . . . . 12 (𝑧 ∈ 1o𝑧 = ∅)
8579, 84sylib 121 . . . . . . . . . . 11 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → 𝑧 = ∅)
8674, 83, 853eqtrd 2151 . . . . . . . . . 10 ((𝑧 ∈ 1o𝑦 = (inr‘𝑧)) → (𝐺𝑦) = ∅)
8786adantl 273 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → (𝐺𝑦) = ∅)
8871, 87eqtr4d 2150 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → 𝑥 = (𝐺𝑦))
8985adantl 273 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → 𝑧 = ∅)
9071, 89eqtr4d 2150 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → 𝑥 = 𝑧)
9190fveq2d 5379 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → (inr‘𝑥) = (inr‘𝑧))
9265adantr 272 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) = (inr‘𝑥))
93 simprr 504 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → 𝑦 = (inr‘𝑧))
9491, 92, 933eqtr4rd 2158 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
9588, 942thd 174 . . . . . . 7 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
9695rexlimdvaa 2524 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) → (∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))))
97 djur 6906 . . . . . . . 8 (𝑦 ∈ (ω ⊔ 1o) ↔ (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧)))
9897biimpi 119 . . . . . . 7 (𝑦 ∈ (ω ⊔ 1o) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧)))
9998ad2antlr 478 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧)))
10070, 96, 99mpjaod 690 . . . . 5 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ 𝑥 = ∅) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
101 simplll 505 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ∈ ω)
102 simplr 502 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ¬ 𝑥 = ∅)
103102neqned 2289 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ≠ ∅)
104 nnsucpred 4490 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑥 ≠ ∅) → suc 𝑥 = 𝑥)
105101, 103, 104syl2anc 406 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → suc 𝑥 = 𝑥)
106105eqeq2d 2126 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc 𝑥 ↔ suc 𝑧 = 𝑥))
107 eqcom 2117 . . . . . . . . 9 (suc 𝑧 = 𝑥𝑥 = suc 𝑧)
108106, 107syl6bb 195 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc 𝑥𝑥 = suc 𝑧))
109 simprr 504 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑦 = (inl‘𝑧))
110 simpr 109 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅)
111110iffalsed 3450 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) → if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) = (inl‘ 𝑥))
112111adantr 272 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) = (inl‘ 𝑥))
113109, 112eqeq12d 2129 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) ↔ (inl‘𝑧) = (inl‘ 𝑥)))
114 vuniex 4320 . . . . . . . . . . . 12 𝑥 ∈ V
115 inl11 6902 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ 𝑥 ∈ V) → ((inl‘𝑧) = (inl‘ 𝑥) ↔ 𝑧 = 𝑥))
116114, 115mpan2 419 . . . . . . . . . . 11 (𝑧 ∈ V → ((inl‘𝑧) = (inl‘ 𝑥) ↔ 𝑧 = 𝑥))
117116elv 2661 . . . . . . . . . 10 ((inl‘𝑧) = (inl‘ 𝑥) ↔ 𝑧 = 𝑥)
118113, 117syl6bb 195 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) ↔ 𝑧 = 𝑥))
119 nnon 4483 . . . . . . . . . . 11 (𝑧 ∈ ω → 𝑧 ∈ On)
120119ad2antrl 479 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑧 ∈ On)
1217ad3antrrr 481 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ∈ ω)
122 nnon 4483 . . . . . . . . . . 11 ( 𝑥 ∈ ω → 𝑥 ∈ On)
123121, 122syl 14 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ∈ On)
124 suc11 4433 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (suc 𝑧 = suc 𝑥𝑧 = 𝑥))
125120, 123, 124syl2anc 406 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc 𝑥𝑧 = 𝑥))
126118, 125bitr4d 190 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) ↔ suc 𝑧 = suc 𝑥))
12749adantl 273 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝐺𝑦) = suc 𝑧)
128127eqeq2d 2126 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺𝑦) ↔ 𝑥 = suc 𝑧))
129108, 126, 1283bitr4rd 220 . . . . . . 7 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
130129rexlimdvaa 2524 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))))
131 simplr 502 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → ¬ 𝑥 = ∅)
13286adantl 273 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → (𝐺𝑦) = ∅)
133132eqeq2d 2126 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → (𝑥 = (𝐺𝑦) ↔ 𝑥 = ∅))
134131, 133mtbird 645 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → ¬ 𝑥 = (𝐺𝑦))
135 djune 6915 . . . . . . . . . . . 12 (( 𝑥 ∈ V ∧ 𝑧 ∈ V) → (inl‘ 𝑥) ≠ (inr‘𝑧))
136135elvd 2662 . . . . . . . . . . 11 ( 𝑥 ∈ V → (inl‘ 𝑥) ≠ (inr‘𝑧))
137114, 136ax-mp 7 . . . . . . . . . 10 (inl‘ 𝑥) ≠ (inr‘𝑧)
138137nesymi 2328 . . . . . . . . 9 ¬ (inr‘𝑧) = (inl‘ 𝑥)
13973, 111eqeqan12rd 2131 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)) ↔ (inr‘𝑧) = (inl‘ 𝑥)))
140138, 139mtbiri 647 . . . . . . . 8 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → ¬ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
141134, 1402falsed 674 . . . . . . 7 ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o𝑦 = (inr‘𝑧))) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
142141rexlimdvaa 2524 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))))
14398ad2antlr 478 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧)))
144130, 142, 143mpjaod 690 . . . . 5 (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) ∧ ¬ 𝑥 = ∅) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
145 exmiddc 804 . . . . . . 7 (DECID 𝑥 = ∅ → (𝑥 = ∅ ∨ ¬ 𝑥 = ∅))
14611, 145syl 14 . . . . . 6 (𝑥 ∈ ω → (𝑥 = ∅ ∨ ¬ 𝑥 = ∅))
147146adantr 272 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) → (𝑥 = ∅ ∨ ¬ 𝑥 = ∅))
148100, 144, 147mpjaodan 770 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o)) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
149148adantl 273 . . 3 ((⊤ ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔ 1o))) → (𝑥 = (𝐺𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥))))
1501, 13, 32, 149f1o2d 5929 . 2 (⊤ → 𝐹:ω–1-1-onto→(ω ⊔ 1o))
151150mptru 1323 1 𝐹:ω–1-1-onto→(ω ⊔ 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 680  DECID wdc 802   = wceq 1314  wtru 1315  wcel 1463  wne 2282  wrex 2391  Vcvv 2657  wss 3037  c0 3329  ifcif 3440   cuni 3702  cmpt 3949   I cid 4170  Oncon0 4245  suc csuc 4247  ωcom 4464  cres 4501  Fun wfun 5075   Fn wfn 5076  wf 5077  1-1-ontowf1o 5080  cfv 5081  1oc1o 6260  cdju 6874  inlcinl 6882  inrcinr 6883  casecdjucase 6920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-1st 5992  df-2nd 5993  df-1o 6267  df-dju 6875  df-inl 6884  df-inr 6885  df-case 6921
This theorem is referenced by:  omp1eom  6932
  Copyright terms: Public domain W3C validator