| Step | Hyp | Ref
| Expression |
| 1 | | omp1eom.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))) |
| 2 | | el1o 6495 |
. . . . . . 7
⊢ (𝑥 ∈ 1o ↔
𝑥 =
∅) |
| 3 | 2 | biimpri 133 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝑥 ∈
1o) |
| 4 | 3 | adantl 277 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ 𝑥 =
∅) → 𝑥 ∈
1o) |
| 5 | | djurcl 7118 |
. . . . 5
⊢ (𝑥 ∈ 1o →
(inr‘𝑥) ∈
(ω ⊔ 1o)) |
| 6 | 4, 5 | syl 14 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ 𝑥 =
∅) → (inr‘𝑥) ∈ (ω ⊔
1o)) |
| 7 | | nnpredcl 4659 |
. . . . . 6
⊢ (𝑥 ∈ ω → ∪ 𝑥
∈ ω) |
| 8 | 7 | ad2antlr 489 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ ¬ 𝑥 = ∅) → ∪ 𝑥
∈ ω) |
| 9 | | djulcl 7117 |
. . . . 5
⊢ (∪ 𝑥
∈ ω → (inl‘∪ 𝑥) ∈ (ω ⊔
1o)) |
| 10 | 8, 9 | syl 14 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ ¬ 𝑥 = ∅) → (inl‘∪ 𝑥)
∈ (ω ⊔ 1o)) |
| 11 | | nndceq0 4654 |
. . . . 5
⊢ (𝑥 ∈ ω →
DECID 𝑥 =
∅) |
| 12 | 11 | adantl 277 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ ω) → DECID 𝑥 = ∅) |
| 13 | 6, 10, 12 | ifcldadc 3590 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ω) → if(𝑥
= ∅, (inr‘𝑥),
(inl‘∪ 𝑥)) ∈ (ω ⊔
1o)) |
| 14 | | omp1eom.s |
. . . . . . . 8
⊢ 𝑆 = (𝑥 ∈ ω ↦ suc 𝑥) |
| 15 | | peano2 4631 |
. . . . . . . 8
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) |
| 16 | 14, 15 | fmpti 5714 |
. . . . . . 7
⊢ 𝑆:ω⟶ω |
| 17 | 16 | a1i 9 |
. . . . . 6
⊢ (⊤
→ 𝑆:ω⟶ω) |
| 18 | | f1oi 5542 |
. . . . . . . . 9
⊢ ( I
↾ 1o):1o–1-1-onto→1o |
| 19 | | f1of 5504 |
. . . . . . . . 9
⊢ (( I
↾ 1o):1o–1-1-onto→1o → ( I ↾
1o):1o⟶1o) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . 8
⊢ ( I
↾ 1o):1o⟶1o |
| 21 | | 1onn 6578 |
. . . . . . . . 9
⊢
1o ∈ ω |
| 22 | | omelon 4645 |
. . . . . . . . . 10
⊢ ω
∈ On |
| 23 | 22 | onelssi 4464 |
. . . . . . . . 9
⊢
(1o ∈ ω → 1o ⊆
ω) |
| 24 | 21, 23 | ax-mp 5 |
. . . . . . . 8
⊢
1o ⊆ ω |
| 25 | | fss 5419 |
. . . . . . . 8
⊢ ((( I
↾ 1o):1o⟶1o ∧ 1o
⊆ ω) → ( I ↾
1o):1o⟶ω) |
| 26 | 20, 24, 25 | mp2an 426 |
. . . . . . 7
⊢ ( I
↾ 1o):1o⟶ω |
| 27 | 26 | a1i 9 |
. . . . . 6
⊢ (⊤
→ ( I ↾
1o):1o⟶ω) |
| 28 | 17, 27 | casef 7154 |
. . . . 5
⊢ (⊤
→ case(𝑆, ( I ↾
1o)):(ω ⊔
1o)⟶ω) |
| 29 | | omp1eom.g |
. . . . . 6
⊢ 𝐺 = case(𝑆, ( I ↾
1o)) |
| 30 | 29 | feq1i 5400 |
. . . . 5
⊢ (𝐺:(ω ⊔
1o)⟶ω ↔ case(𝑆, ( I ↾ 1o)):(ω
⊔ 1o)⟶ω) |
| 31 | 28, 30 | sylibr 134 |
. . . 4
⊢ (⊤
→ 𝐺:(ω ⊔
1o)⟶ω) |
| 32 | 31 | ffvelcdmda 5697 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ (ω ⊔ 1o)) → (𝐺‘𝑦) ∈ ω) |
| 33 | | ffn 5407 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆:ω⟶ω →
𝑆 Fn
ω) |
| 34 | 16, 33 | mp1i 10 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑆 Fn ω) |
| 35 | | ffun 5410 |
. . . . . . . . . . . . . . . 16
⊢ (( I
↾ 1o):1o⟶1o → Fun ( I
↾ 1o)) |
| 36 | 20, 35 | mp1i 10 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → Fun ( I ↾
1o)) |
| 37 | | simpl 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑧 ∈ ω) |
| 38 | 34, 36, 37 | caseinl 7157 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inl‘𝑧)) = (𝑆‘𝑧)) |
| 39 | 29 | eqcomi 2200 |
. . . . . . . . . . . . . . . 16
⊢
case(𝑆, ( I ↾
1o)) = 𝐺 |
| 40 | 39 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → case(𝑆, ( I ↾ 1o)) = 𝐺) |
| 41 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑦 = (inl‘𝑧)) |
| 42 | 41 | eqcomd 2202 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (inl‘𝑧) = 𝑦) |
| 43 | 40, 42 | fveq12d 5565 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inl‘𝑧)) = (𝐺‘𝑦)) |
| 44 | | peano2 4631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ω → suc 𝑧 ∈
ω) |
| 45 | | suceq 4437 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) |
| 46 | 45, 14 | fvmptg 5637 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝑆‘𝑧) = suc 𝑧) |
| 47 | 44, 46 | mpdan 421 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ω → (𝑆‘𝑧) = suc 𝑧) |
| 48 | 47 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝑆‘𝑧) = suc 𝑧) |
| 49 | 38, 43, 48 | 3eqtr3d 2237 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝐺‘𝑦) = suc 𝑧) |
| 50 | | peano3 4632 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ω → suc 𝑧 ≠ ∅) |
| 51 | 50 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → suc 𝑧 ≠ ∅) |
| 52 | 49, 51 | eqnetrd 2391 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝐺‘𝑦) ≠ ∅) |
| 53 | 52 | adantl 277 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝐺‘𝑦) ≠ ∅) |
| 54 | 53 | necomd 2453 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
∅ ≠ (𝐺‘𝑦)) |
| 55 | 54 | neneqd 2388 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
¬ ∅ = (𝐺‘𝑦)) |
| 56 | | simplr 528 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
𝑥 =
∅) |
| 57 | 56 | eqeq1d 2205 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝑥 = (𝐺‘𝑦) ↔ ∅ = (𝐺‘𝑦))) |
| 58 | 55, 57 | mtbird 674 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
¬ 𝑥 = (𝐺‘𝑦)) |
| 59 | | djune 7144 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧ 𝑥 ∈ V) →
(inl‘𝑧) ≠
(inr‘𝑥)) |
| 60 | 59 | elvd 2768 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V →
(inl‘𝑧) ≠
(inr‘𝑥)) |
| 61 | 60 | elv 2767 |
. . . . . . . . . 10
⊢
(inl‘𝑧) ≠
(inr‘𝑥) |
| 62 | 61 | neii 2369 |
. . . . . . . . 9
⊢ ¬
(inl‘𝑧) =
(inr‘𝑥) |
| 63 | | simprr 531 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
𝑦 = (inl‘𝑧)) |
| 64 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → 𝑥 =
∅) |
| 65 | 64 | iftrued 3568 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → if(𝑥 =
∅, (inr‘𝑥),
(inl‘∪ 𝑥)) = (inr‘𝑥)) |
| 66 | 65 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
if(𝑥 = ∅,
(inr‘𝑥),
(inl‘∪ 𝑥)) = (inr‘𝑥)) |
| 67 | 63, 66 | eqeq12d 2211 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ (inl‘𝑧) = (inr‘𝑥))) |
| 68 | 62, 67 | mtbiri 676 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
¬ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
| 69 | 58, 68 | 2falsed 703 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 70 | 69 | rexlimdvaa 2615 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (∃𝑧
∈ ω 𝑦 =
(inl‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
| 71 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑥 =
∅) |
| 72 | 29 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝐺 = case(𝑆, ( I ↾
1o))) |
| 73 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝑦 = (inr‘𝑧)) |
| 74 | 72, 73 | fveq12d 5565 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (𝐺‘𝑦) = (case(𝑆, ( I ↾
1o))‘(inr‘𝑧))) |
| 75 | 14 | funmpt2 5297 |
. . . . . . . . . . . . . 14
⊢ Fun 𝑆 |
| 76 | 75 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → Fun 𝑆) |
| 77 | | fnresi 5375 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ 1o) Fn 1o |
| 78 | 77 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → ( I ↾
1o) Fn 1o) |
| 79 | | simpl 109 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝑧 ∈ 1o) |
| 80 | 76, 78, 79 | caseinr 7158 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inr‘𝑧)) = (( I ↾ 1o)‘𝑧)) |
| 81 | | fvresi 5755 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 1o → ((
I ↾ 1o)‘𝑧) = 𝑧) |
| 82 | 81 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (( I ↾
1o)‘𝑧) =
𝑧) |
| 83 | 80, 82 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inr‘𝑧)) = 𝑧) |
| 84 | | el1o 6495 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 1o ↔
𝑧 =
∅) |
| 85 | 79, 84 | sylib 122 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝑧 = ∅) |
| 86 | 74, 83, 85 | 3eqtrd 2233 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (𝐺‘𝑦) = ∅) |
| 87 | 86 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
(𝐺‘𝑦) = ∅) |
| 88 | 71, 87 | eqtr4d 2232 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑥 = (𝐺‘𝑦)) |
| 89 | 85 | adantl 277 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑧 =
∅) |
| 90 | 71, 89 | eqtr4d 2232 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑥 = 𝑧) |
| 91 | 90 | fveq2d 5562 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
(inr‘𝑥) =
(inr‘𝑧)) |
| 92 | 65 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
if(𝑥 = ∅,
(inr‘𝑥),
(inl‘∪ 𝑥)) = (inr‘𝑥)) |
| 93 | | simprr 531 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑦 = (inr‘𝑧)) |
| 94 | 91, 92, 93 | 3eqtr4rd 2240 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))) |
| 95 | 88, 94 | 2thd 175 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
(𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 96 | 95 | rexlimdvaa 2615 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (∃𝑧
∈ 1o 𝑦 =
(inr‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
| 97 | | djur 7135 |
. . . . . . . 8
⊢ (𝑦 ∈ (ω ⊔
1o) ↔ (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧))) |
| 98 | 97 | biimpi 120 |
. . . . . . 7
⊢ (𝑦 ∈ (ω ⊔
1o) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧))) |
| 99 | 98 | ad2antlr 489 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (∃𝑧
∈ ω 𝑦 =
(inl‘𝑧) ∨
∃𝑧 ∈
1o 𝑦 =
(inr‘𝑧))) |
| 100 | 70, 96, 99 | mpjaod 719 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 101 | | simplll 533 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ∈ ω) |
| 102 | | simplr 528 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ¬ 𝑥 = ∅) |
| 103 | 102 | neqned 2374 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ≠ ∅) |
| 104 | | nnsucpred 4653 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ 𝑥 ≠ ∅) → suc ∪ 𝑥 =
𝑥) |
| 105 | 101, 103,
104 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → suc ∪
𝑥 = 𝑥) |
| 106 | 105 | eqeq2d 2208 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc ∪ 𝑥 ↔ suc 𝑧 = 𝑥)) |
| 107 | | eqcom 2198 |
. . . . . . . . 9
⊢ (suc
𝑧 = 𝑥 ↔ 𝑥 = suc 𝑧) |
| 108 | 106, 107 | bitrdi 196 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc ∪ 𝑥 ↔ 𝑥 = suc 𝑧)) |
| 109 | | simprr 531 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑦 = (inl‘𝑧)) |
| 110 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅) |
| 111 | 110 | iffalsed 3571 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) = (inl‘∪ 𝑥)) |
| 112 | 111 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) = (inl‘∪ 𝑥)) |
| 113 | 109, 112 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ (inl‘𝑧) = (inl‘∪ 𝑥))) |
| 114 | | vuniex 4473 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥
∈ V |
| 115 | | inl11 7131 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧ ∪ 𝑥
∈ V) → ((inl‘𝑧) = (inl‘∪
𝑥) ↔ 𝑧 = ∪
𝑥)) |
| 116 | 114, 115 | mpan2 425 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V →
((inl‘𝑧) =
(inl‘∪ 𝑥) ↔ 𝑧 = ∪ 𝑥)) |
| 117 | 116 | elv 2767 |
. . . . . . . . . 10
⊢
((inl‘𝑧) =
(inl‘∪ 𝑥) ↔ 𝑧 = ∪ 𝑥) |
| 118 | 113, 117 | bitrdi 196 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ 𝑧 = ∪
𝑥)) |
| 119 | | nnon 4646 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ω → 𝑧 ∈ On) |
| 120 | 119 | ad2antrl 490 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑧 ∈ On) |
| 121 | 7 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ∪ 𝑥 ∈
ω) |
| 122 | | nnon 4646 |
. . . . . . . . . . 11
⊢ (∪ 𝑥
∈ ω → ∪ 𝑥 ∈ On) |
| 123 | 121, 122 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ∪ 𝑥 ∈ On) |
| 124 | | suc11 4594 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ ∪ 𝑥
∈ On) → (suc 𝑧 =
suc ∪ 𝑥 ↔ 𝑧 = ∪ 𝑥)) |
| 125 | 120, 123,
124 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc ∪ 𝑥 ↔ 𝑧 = ∪ 𝑥)) |
| 126 | 118, 125 | bitr4d 191 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ suc 𝑧 = suc ∪ 𝑥)) |
| 127 | 49 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝐺‘𝑦) = suc 𝑧) |
| 128 | 127 | eqeq2d 2208 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑥 = suc 𝑧)) |
| 129 | 108, 126,
128 | 3bitr4rd 221 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 130 | 129 | rexlimdvaa 2615 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
| 131 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → ¬ 𝑥 = ∅) |
| 132 | 86 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝐺‘𝑦) = ∅) |
| 133 | 132 | eqeq2d 2208 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑥 = ∅)) |
| 134 | 131, 133 | mtbird 674 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → ¬ 𝑥 = (𝐺‘𝑦)) |
| 135 | | djune 7144 |
. . . . . . . . . . . 12
⊢ ((∪ 𝑥
∈ V ∧ 𝑧 ∈ V)
→ (inl‘∪ 𝑥) ≠ (inr‘𝑧)) |
| 136 | 135 | elvd 2768 |
. . . . . . . . . . 11
⊢ (∪ 𝑥
∈ V → (inl‘∪ 𝑥) ≠ (inr‘𝑧)) |
| 137 | 114, 136 | ax-mp 5 |
. . . . . . . . . 10
⊢
(inl‘∪ 𝑥) ≠ (inr‘𝑧) |
| 138 | 137 | nesymi 2413 |
. . . . . . . . 9
⊢ ¬
(inr‘𝑧) =
(inl‘∪ 𝑥) |
| 139 | 73, 111 | eqeqan12rd 2213 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ (inr‘𝑧) = (inl‘∪ 𝑥))) |
| 140 | 138, 139 | mtbiri 676 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → ¬ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))) |
| 141 | 134, 140 | 2falsed 703 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 142 | 141 | rexlimdvaa 2615 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
| 143 | 98 | ad2antlr 489 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧))) |
| 144 | 130, 142,
143 | mpjaod 719 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 145 | | exmiddc 837 |
. . . . . . 7
⊢
(DECID 𝑥 = ∅ → (𝑥 = ∅ ∨ ¬ 𝑥 = ∅)) |
| 146 | 11, 145 | syl 14 |
. . . . . 6
⊢ (𝑥 ∈ ω → (𝑥 = ∅ ∨ ¬ 𝑥 = ∅)) |
| 147 | 146 | adantr 276 |
. . . . 5
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) → (𝑥 =
∅ ∨ ¬ 𝑥 =
∅)) |
| 148 | 100, 144,
147 | mpjaodan 799 |
. . . 4
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) → (𝑥 =
(𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 149 | 148 | adantl 277 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ω ∧ 𝑦
∈ (ω ⊔ 1o))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
| 150 | 1, 13, 32, 149 | f1o2d 6128 |
. 2
⊢ (⊤
→ 𝐹:ω–1-1-onto→(ω ⊔
1o)) |
| 151 | 150 | mptru 1373 |
1
⊢ 𝐹:ω–1-1-onto→(ω ⊔
1o) |