Step | Hyp | Ref
| Expression |
1 | | omp1eom.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))) |
2 | | el1o 6405 |
. . . . . . 7
⊢ (𝑥 ∈ 1o ↔
𝑥 =
∅) |
3 | 2 | biimpri 132 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝑥 ∈
1o) |
4 | 3 | adantl 275 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ 𝑥 =
∅) → 𝑥 ∈
1o) |
5 | | djurcl 7017 |
. . . . 5
⊢ (𝑥 ∈ 1o →
(inr‘𝑥) ∈
(ω ⊔ 1o)) |
6 | 4, 5 | syl 14 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ 𝑥 =
∅) → (inr‘𝑥) ∈ (ω ⊔
1o)) |
7 | | nnpredcl 4600 |
. . . . . 6
⊢ (𝑥 ∈ ω → ∪ 𝑥
∈ ω) |
8 | 7 | ad2antlr 481 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ ¬ 𝑥 = ∅) → ∪ 𝑥
∈ ω) |
9 | | djulcl 7016 |
. . . . 5
⊢ (∪ 𝑥
∈ ω → (inl‘∪ 𝑥) ∈ (ω ⊔
1o)) |
10 | 8, 9 | syl 14 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ ω) ∧ ¬ 𝑥 = ∅) → (inl‘∪ 𝑥)
∈ (ω ⊔ 1o)) |
11 | | nndceq0 4595 |
. . . . 5
⊢ (𝑥 ∈ ω →
DECID 𝑥 =
∅) |
12 | 11 | adantl 275 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ ω) → DECID 𝑥 = ∅) |
13 | 6, 10, 12 | ifcldadc 3549 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ω) → if(𝑥
= ∅, (inr‘𝑥),
(inl‘∪ 𝑥)) ∈ (ω ⊔
1o)) |
14 | | omp1eom.s |
. . . . . . . 8
⊢ 𝑆 = (𝑥 ∈ ω ↦ suc 𝑥) |
15 | | peano2 4572 |
. . . . . . . 8
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) |
16 | 14, 15 | fmpti 5637 |
. . . . . . 7
⊢ 𝑆:ω⟶ω |
17 | 16 | a1i 9 |
. . . . . 6
⊢ (⊤
→ 𝑆:ω⟶ω) |
18 | | f1oi 5470 |
. . . . . . . . 9
⊢ ( I
↾ 1o):1o–1-1-onto→1o |
19 | | f1of 5432 |
. . . . . . . . 9
⊢ (( I
↾ 1o):1o–1-1-onto→1o → ( I ↾
1o):1o⟶1o) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . 8
⊢ ( I
↾ 1o):1o⟶1o |
21 | | 1onn 6488 |
. . . . . . . . 9
⊢
1o ∈ ω |
22 | | omelon 4586 |
. . . . . . . . . 10
⊢ ω
∈ On |
23 | 22 | onelssi 4407 |
. . . . . . . . 9
⊢
(1o ∈ ω → 1o ⊆
ω) |
24 | 21, 23 | ax-mp 5 |
. . . . . . . 8
⊢
1o ⊆ ω |
25 | | fss 5349 |
. . . . . . . 8
⊢ ((( I
↾ 1o):1o⟶1o ∧ 1o
⊆ ω) → ( I ↾
1o):1o⟶ω) |
26 | 20, 24, 25 | mp2an 423 |
. . . . . . 7
⊢ ( I
↾ 1o):1o⟶ω |
27 | 26 | a1i 9 |
. . . . . 6
⊢ (⊤
→ ( I ↾
1o):1o⟶ω) |
28 | 17, 27 | casef 7053 |
. . . . 5
⊢ (⊤
→ case(𝑆, ( I ↾
1o)):(ω ⊔
1o)⟶ω) |
29 | | omp1eom.g |
. . . . . 6
⊢ 𝐺 = case(𝑆, ( I ↾
1o)) |
30 | 29 | feq1i 5330 |
. . . . 5
⊢ (𝐺:(ω ⊔
1o)⟶ω ↔ case(𝑆, ( I ↾ 1o)):(ω
⊔ 1o)⟶ω) |
31 | 28, 30 | sylibr 133 |
. . . 4
⊢ (⊤
→ 𝐺:(ω ⊔
1o)⟶ω) |
32 | 31 | ffvelrnda 5620 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ (ω ⊔ 1o)) → (𝐺‘𝑦) ∈ ω) |
33 | | ffn 5337 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆:ω⟶ω →
𝑆 Fn
ω) |
34 | 16, 33 | mp1i 10 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑆 Fn ω) |
35 | | ffun 5340 |
. . . . . . . . . . . . . . . 16
⊢ (( I
↾ 1o):1o⟶1o → Fun ( I
↾ 1o)) |
36 | 20, 35 | mp1i 10 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → Fun ( I ↾
1o)) |
37 | | simpl 108 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑧 ∈ ω) |
38 | 34, 36, 37 | caseinl 7056 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inl‘𝑧)) = (𝑆‘𝑧)) |
39 | 29 | eqcomi 2169 |
. . . . . . . . . . . . . . . 16
⊢
case(𝑆, ( I ↾
1o)) = 𝐺 |
40 | 39 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → case(𝑆, ( I ↾ 1o)) = 𝐺) |
41 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → 𝑦 = (inl‘𝑧)) |
42 | 41 | eqcomd 2171 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (inl‘𝑧) = 𝑦) |
43 | 40, 42 | fveq12d 5493 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inl‘𝑧)) = (𝐺‘𝑦)) |
44 | | peano2 4572 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ω → suc 𝑧 ∈
ω) |
45 | | suceq 4380 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) |
46 | 45, 14 | fvmptg 5562 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ω ∧ suc 𝑧 ∈ ω) → (𝑆‘𝑧) = suc 𝑧) |
47 | 44, 46 | mpdan 418 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ω → (𝑆‘𝑧) = suc 𝑧) |
48 | 47 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝑆‘𝑧) = suc 𝑧) |
49 | 38, 43, 48 | 3eqtr3d 2206 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝐺‘𝑦) = suc 𝑧) |
50 | | peano3 4573 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ω → suc 𝑧 ≠ ∅) |
51 | 50 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → suc 𝑧 ≠ ∅) |
52 | 49, 51 | eqnetrd 2360 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧)) → (𝐺‘𝑦) ≠ ∅) |
53 | 52 | adantl 275 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝐺‘𝑦) ≠ ∅) |
54 | 53 | necomd 2422 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
∅ ≠ (𝐺‘𝑦)) |
55 | 54 | neneqd 2357 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
¬ ∅ = (𝐺‘𝑦)) |
56 | | simplr 520 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
𝑥 =
∅) |
57 | 56 | eqeq1d 2174 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝑥 = (𝐺‘𝑦) ↔ ∅ = (𝐺‘𝑦))) |
58 | 55, 57 | mtbird 663 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
¬ 𝑥 = (𝐺‘𝑦)) |
59 | | djune 7043 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧ 𝑥 ∈ V) →
(inl‘𝑧) ≠
(inr‘𝑥)) |
60 | 59 | elvd 2731 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V →
(inl‘𝑧) ≠
(inr‘𝑥)) |
61 | 60 | elv 2730 |
. . . . . . . . . 10
⊢
(inl‘𝑧) ≠
(inr‘𝑥) |
62 | 61 | neii 2338 |
. . . . . . . . 9
⊢ ¬
(inl‘𝑧) =
(inr‘𝑥) |
63 | | simprr 522 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
𝑦 = (inl‘𝑧)) |
64 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → 𝑥 =
∅) |
65 | 64 | iftrued 3527 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → if(𝑥 =
∅, (inr‘𝑥),
(inl‘∪ 𝑥)) = (inr‘𝑥)) |
66 | 65 | adantr 274 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
if(𝑥 = ∅,
(inr‘𝑥),
(inl‘∪ 𝑥)) = (inr‘𝑥)) |
67 | 63, 66 | eqeq12d 2180 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ (inl‘𝑧) = (inr‘𝑥))) |
68 | 62, 67 | mtbiri 665 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
¬ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
69 | 58, 68 | 2falsed 692 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
ω ∧ 𝑦 =
(inl‘𝑧))) →
(𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
70 | 69 | rexlimdvaa 2584 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (∃𝑧
∈ ω 𝑦 =
(inl‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
71 | | simplr 520 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑥 =
∅) |
72 | 29 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝐺 = case(𝑆, ( I ↾
1o))) |
73 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝑦 = (inr‘𝑧)) |
74 | 72, 73 | fveq12d 5493 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (𝐺‘𝑦) = (case(𝑆, ( I ↾
1o))‘(inr‘𝑧))) |
75 | 14 | funmpt2 5227 |
. . . . . . . . . . . . . 14
⊢ Fun 𝑆 |
76 | 75 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → Fun 𝑆) |
77 | | fnresi 5305 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ 1o) Fn 1o |
78 | 77 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → ( I ↾
1o) Fn 1o) |
79 | | simpl 108 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝑧 ∈ 1o) |
80 | 76, 78, 79 | caseinr 7057 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inr‘𝑧)) = (( I ↾ 1o)‘𝑧)) |
81 | | fvresi 5678 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 1o → ((
I ↾ 1o)‘𝑧) = 𝑧) |
82 | 81 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (( I ↾
1o)‘𝑧) =
𝑧) |
83 | 80, 82 | eqtrd 2198 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (case(𝑆, ( I ↾
1o))‘(inr‘𝑧)) = 𝑧) |
84 | | el1o 6405 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 1o ↔
𝑧 =
∅) |
85 | 79, 84 | sylib 121 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → 𝑧 = ∅) |
86 | 74, 83, 85 | 3eqtrd 2202 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 1o ∧
𝑦 = (inr‘𝑧)) → (𝐺‘𝑦) = ∅) |
87 | 86 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
(𝐺‘𝑦) = ∅) |
88 | 71, 87 | eqtr4d 2201 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑥 = (𝐺‘𝑦)) |
89 | 85 | adantl 275 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑧 =
∅) |
90 | 71, 89 | eqtr4d 2201 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑥 = 𝑧) |
91 | 90 | fveq2d 5490 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
(inr‘𝑥) =
(inr‘𝑧)) |
92 | 65 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
if(𝑥 = ∅,
(inr‘𝑥),
(inl‘∪ 𝑥)) = (inr‘𝑥)) |
93 | | simprr 522 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑦 = (inr‘𝑧)) |
94 | 91, 92, 93 | 3eqtr4rd 2209 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))) |
95 | 88, 94 | 2thd 174 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) ∧ (𝑧 ∈
1o ∧ 𝑦 =
(inr‘𝑧))) →
(𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
96 | 95 | rexlimdvaa 2584 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (∃𝑧
∈ 1o 𝑦 =
(inr‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
97 | | djur 7034 |
. . . . . . . 8
⊢ (𝑦 ∈ (ω ⊔
1o) ↔ (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧))) |
98 | 97 | biimpi 119 |
. . . . . . 7
⊢ (𝑦 ∈ (ω ⊔
1o) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧))) |
99 | 98 | ad2antlr 481 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (∃𝑧
∈ ω 𝑦 =
(inl‘𝑧) ∨
∃𝑧 ∈
1o 𝑦 =
(inr‘𝑧))) |
100 | 70, 96, 99 | mpjaod 708 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ 𝑥 =
∅) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
101 | | simplll 523 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ∈ ω) |
102 | | simplr 520 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ¬ 𝑥 = ∅) |
103 | 102 | neqned 2343 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑥 ≠ ∅) |
104 | | nnsucpred 4594 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ 𝑥 ≠ ∅) → suc ∪ 𝑥 =
𝑥) |
105 | 101, 103,
104 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → suc ∪
𝑥 = 𝑥) |
106 | 105 | eqeq2d 2177 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc ∪ 𝑥 ↔ suc 𝑧 = 𝑥)) |
107 | | eqcom 2167 |
. . . . . . . . 9
⊢ (suc
𝑧 = 𝑥 ↔ 𝑥 = suc 𝑧) |
108 | 106, 107 | bitrdi 195 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc ∪ 𝑥 ↔ 𝑥 = suc 𝑧)) |
109 | | simprr 522 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑦 = (inl‘𝑧)) |
110 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → ¬ 𝑥 = ∅) |
111 | 110 | iffalsed 3530 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) = (inl‘∪ 𝑥)) |
112 | 111 | adantr 274 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) = (inl‘∪ 𝑥)) |
113 | 109, 112 | eqeq12d 2180 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ (inl‘𝑧) = (inl‘∪ 𝑥))) |
114 | | vuniex 4416 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥
∈ V |
115 | | inl11 7030 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧ ∪ 𝑥
∈ V) → ((inl‘𝑧) = (inl‘∪
𝑥) ↔ 𝑧 = ∪
𝑥)) |
116 | 114, 115 | mpan2 422 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V →
((inl‘𝑧) =
(inl‘∪ 𝑥) ↔ 𝑧 = ∪ 𝑥)) |
117 | 116 | elv 2730 |
. . . . . . . . . 10
⊢
((inl‘𝑧) =
(inl‘∪ 𝑥) ↔ 𝑧 = ∪ 𝑥) |
118 | 113, 117 | bitrdi 195 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ 𝑧 = ∪
𝑥)) |
119 | | nnon 4587 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ω → 𝑧 ∈ On) |
120 | 119 | ad2antrl 482 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → 𝑧 ∈ On) |
121 | 7 | ad3antrrr 484 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ∪ 𝑥 ∈
ω) |
122 | | nnon 4587 |
. . . . . . . . . . 11
⊢ (∪ 𝑥
∈ ω → ∪ 𝑥 ∈ On) |
123 | 121, 122 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → ∪ 𝑥 ∈ On) |
124 | | suc11 4535 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ ∪ 𝑥
∈ On) → (suc 𝑧 =
suc ∪ 𝑥 ↔ 𝑧 = ∪ 𝑥)) |
125 | 120, 123,
124 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (suc 𝑧 = suc ∪ 𝑥 ↔ 𝑧 = ∪ 𝑥)) |
126 | 118, 125 | bitr4d 190 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ suc 𝑧 = suc ∪ 𝑥)) |
127 | 49 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝐺‘𝑦) = suc 𝑧) |
128 | 127 | eqeq2d 2177 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑥 = suc 𝑧)) |
129 | 108, 126,
128 | 3bitr4rd 220 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ ω ∧ 𝑦 = (inl‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
130 | 129 | rexlimdvaa 2584 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
131 | | simplr 520 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → ¬ 𝑥 = ∅) |
132 | 86 | adantl 275 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝐺‘𝑦) = ∅) |
133 | 132 | eqeq2d 2177 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑥 = ∅)) |
134 | 131, 133 | mtbird 663 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → ¬ 𝑥 = (𝐺‘𝑦)) |
135 | | djune 7043 |
. . . . . . . . . . . 12
⊢ ((∪ 𝑥
∈ V ∧ 𝑧 ∈ V)
→ (inl‘∪ 𝑥) ≠ (inr‘𝑧)) |
136 | 135 | elvd 2731 |
. . . . . . . . . . 11
⊢ (∪ 𝑥
∈ V → (inl‘∪ 𝑥) ≠ (inr‘𝑧)) |
137 | 114, 136 | ax-mp 5 |
. . . . . . . . . 10
⊢
(inl‘∪ 𝑥) ≠ (inr‘𝑧) |
138 | 137 | nesymi 2382 |
. . . . . . . . 9
⊢ ¬
(inr‘𝑧) =
(inl‘∪ 𝑥) |
139 | 73, 111 | eqeqan12rd 2182 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)) ↔ (inr‘𝑧) = (inl‘∪ 𝑥))) |
140 | 138, 139 | mtbiri 665 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → ¬ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))) |
141 | 134, 140 | 2falsed 692 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) ∧ (𝑧 ∈ 1o ∧ 𝑦 = (inr‘𝑧))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
142 | 141 | rexlimdvaa 2584 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥))))) |
143 | 98 | ad2antlr 481 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (∃𝑧 ∈ ω 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 1o 𝑦 = (inr‘𝑧))) |
144 | 130, 142,
143 | mpjaod 708 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) ∧ ¬ 𝑥 = ∅) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
145 | | exmiddc 826 |
. . . . . . 7
⊢
(DECID 𝑥 = ∅ → (𝑥 = ∅ ∨ ¬ 𝑥 = ∅)) |
146 | 11, 145 | syl 14 |
. . . . . 6
⊢ (𝑥 ∈ ω → (𝑥 = ∅ ∨ ¬ 𝑥 = ∅)) |
147 | 146 | adantr 274 |
. . . . 5
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) → (𝑥 =
∅ ∨ ¬ 𝑥 =
∅)) |
148 | 100, 144,
147 | mpjaodan 788 |
. . . 4
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ (ω ⊔
1o)) → (𝑥 =
(𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
149 | 148 | adantl 275 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ω ∧ 𝑦
∈ (ω ⊔ 1o))) → (𝑥 = (𝐺‘𝑦) ↔ 𝑦 = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪
𝑥)))) |
150 | 1, 13, 32, 149 | f1o2d 6043 |
. 2
⊢ (⊤
→ 𝐹:ω–1-1-onto→(ω ⊔
1o)) |
151 | 150 | mptru 1352 |
1
⊢ 𝐹:ω–1-1-onto→(ω ⊔
1o) |