| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | eqeq12 2219 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqeqan12rd 2223 eqfnfv 5687 eqfnfv2 5688 f1mpt 5850 xpopth 6272 f1o2ndf1 6324 ecopoveq 6727 xpdom2 6938 djune 7192 addpipqqs 7496 enq0enq 7557 enq0sym 7558 enq0tr 7560 enq0breq 7562 preqlu 7598 cnegexlem1 8260 neg11 8336 subeqrev 8461 cnref1o 9785 xneg11 9969 modlteq 10555 sq11 10770 qsqeqor 10808 fz1eqb 10948 eqwrd 11047 s111 11099 cj11 11266 sqrt11 11400 sqabs 11443 recan 11470 reeff1 12061 efieq 12096 xpsff1o 13231 ismhm 13343 isdomn 14081 tgtop11 14598 ioocosf1o 15376 mpodvdsmulf1o 15512 |
| Copyright terms: Public domain | W3C validator |