| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | eqeq12 2209 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqeqan12rd 2213 eqfnfv 5659 eqfnfv2 5660 f1mpt 5818 xpopth 6234 f1o2ndf1 6286 ecopoveq 6689 xpdom2 6890 djune 7144 addpipqqs 7437 enq0enq 7498 enq0sym 7499 enq0tr 7501 enq0breq 7503 preqlu 7539 cnegexlem1 8201 neg11 8277 subeqrev 8402 cnref1o 9725 xneg11 9909 modlteq 10489 sq11 10704 qsqeqor 10742 fz1eqb 10882 eqwrd 10975 cj11 11070 sqrt11 11204 sqabs 11247 recan 11274 reeff1 11865 efieq 11900 xpsff1o 12992 ismhm 13093 isdomn 13825 tgtop11 14312 ioocosf1o 15090 mpodvdsmulf1o 15226 |
| Copyright terms: Public domain | W3C validator |