Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeqan12d | GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | eqeq12 2178 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
4 | 1, 2, 3 | syl2an 287 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqeqan12rd 2182 eqfnfv 5583 eqfnfv2 5584 f1mpt 5739 xpopth 6144 f1o2ndf1 6196 ecopoveq 6596 xpdom2 6797 djune 7043 addpipqqs 7311 enq0enq 7372 enq0sym 7373 enq0tr 7375 enq0breq 7377 preqlu 7413 cnegexlem1 8073 neg11 8149 subeqrev 8274 cnref1o 9588 xneg11 9770 modlteq 10332 sq11 10527 qsqeqor 10565 fz1eqb 10704 cj11 10847 sqrt11 10981 sqabs 11024 recan 11051 reeff1 11641 efieq 11676 tgtop11 12716 ioocosf1o 13415 |
Copyright terms: Public domain | W3C validator |