| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | eqeq12 2242 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqeqan12rd 2246 eqfnfv 5734 eqfnfv2 5735 f1mpt 5901 xpopth 6328 f1o2ndf1 6380 ecopoveq 6785 xpdom2 6998 djune 7253 addpipqqs 7565 enq0enq 7626 enq0sym 7627 enq0tr 7629 enq0breq 7631 preqlu 7667 cnegexlem1 8329 neg11 8405 subeqrev 8530 cnref1o 9854 xneg11 10038 modlteq 10627 sq11 10842 qsqeqor 10880 fz1eqb 11020 eqwrd 11120 s111 11172 ccatopth 11256 wrd2ind 11263 cj11 11424 sqrt11 11558 sqabs 11601 recan 11628 reeff1 12219 efieq 12254 xpsff1o 13390 ismhm 13502 isdomn 14241 tgtop11 14758 ioocosf1o 15536 mpodvdsmulf1o 15672 iswlk 16044 |
| Copyright terms: Public domain | W3C validator |