| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeqan12d | GIF version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | eqeq12 2242 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqeqan12rd 2246 eqfnfv 5725 eqfnfv2 5726 f1mpt 5888 xpopth 6312 f1o2ndf1 6364 ecopoveq 6767 xpdom2 6978 djune 7233 addpipqqs 7545 enq0enq 7606 enq0sym 7607 enq0tr 7609 enq0breq 7611 preqlu 7647 cnegexlem1 8309 neg11 8385 subeqrev 8510 cnref1o 9834 xneg11 10018 modlteq 10606 sq11 10821 qsqeqor 10859 fz1eqb 10999 eqwrd 11098 s111 11150 ccatopth 11234 wrd2ind 11241 cj11 11402 sqrt11 11536 sqabs 11579 recan 11606 reeff1 12197 efieq 12232 xpsff1o 13368 ismhm 13480 isdomn 14218 tgtop11 14735 ioocosf1o 15513 mpodvdsmulf1o 15649 |
| Copyright terms: Public domain | W3C validator |