Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeqan12d | GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | eqeq12 2183 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
4 | 1, 2, 3 | syl2an 287 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqeqan12rd 2187 eqfnfv 5593 eqfnfv2 5594 f1mpt 5750 xpopth 6155 f1o2ndf1 6207 ecopoveq 6608 xpdom2 6809 djune 7055 addpipqqs 7332 enq0enq 7393 enq0sym 7394 enq0tr 7396 enq0breq 7398 preqlu 7434 cnegexlem1 8094 neg11 8170 subeqrev 8295 cnref1o 9609 xneg11 9791 modlteq 10353 sq11 10548 qsqeqor 10586 fz1eqb 10725 cj11 10869 sqrt11 11003 sqabs 11046 recan 11073 reeff1 11663 efieq 11698 ismhm 12685 tgtop11 12870 ioocosf1o 13569 |
Copyright terms: Public domain | W3C validator |