![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr | GIF version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2094 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpar 291 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-4 1445 ax-17 1464 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 |
This theorem is referenced by: eqtr2 2106 eqtr3 2107 sylan9eq 2140 eqvinc 2740 eqvincg 2741 uneqdifeqim 3368 preqsn 3619 dtruex 4375 relresfld 4960 relcoi1 4962 eqer 6324 xpiderm 6363 addlsub 7848 bj-findis 11874 |
Copyright terms: Public domain | W3C validator |