ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr GIF version

Theorem eqtr 2211
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.)
Assertion
Ref Expression
eqtr ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)

Proof of Theorem eqtr
StepHypRef Expression
1 eqeq1 2200 . 2 (𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
21biimpar 297 1 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186
This theorem is referenced by:  eqtr2  2212  eqtr3  2213  sylan9eq  2246  eqvinc  2884  eqvincg  2885  uneqdifeqim  3533  preqsn  3802  dtruex  4592  relresfld  5196  relcoi1  5198  eqer  6621  xpider  6662  addlsub  8391  bj-findis  15541
  Copyright terms: Public domain W3C validator