| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > orim2i | GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) | 
| Ref | Expression | 
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 760 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: orbi2i 763 pm1.5 766 pm2.3 776 ordi 817 dcn 843 pm2.25dc 894 dcand 934 axi12 1528 dveeq2or 1830 equs5or 1844 sb4or 1847 sb4bor 1849 nfsb2or 1851 sbequilem 1852 sbequi 1853 sbal1yz 2020 dvelimor 2037 exmodc 2095 r19.44av 2656 exmidundif 4239 exmidundifim 4240 exmid1stab 4241 elsuci 4438 acexmidlemcase 5917 undifdcss 6984 updjudhf 7145 ctssdccl 7177 zindd 9444 fiubm 10920 fsumsplitsn 11575 fprodcllem 11771 fprodsplitsn 11798 gsumwsubmcl 13128 gsumwmhm 13130 subctctexmid 15645 | 
| Copyright terms: Public domain | W3C validator |