| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2i | GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 764 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi2i 767 pm1.5 770 pm2.3 780 ordi 821 dcn 847 pm2.25dc 898 dcand 938 axi12 1560 dveeq2or 1862 equs5or 1876 sb4or 1879 sb4bor 1881 nfsb2or 1883 sbequilem 1884 sbequi 1885 sbal1yz 2052 dvelimor 2069 exmodc 2128 r19.44av 2690 exmidundif 4289 exmidundifim 4290 exmid1stab 4291 elsuci 4491 acexmidlemcase 5989 undifdcss 7073 updjudhf 7234 ctssdccl 7266 zindd 9553 fiubm 11037 lswex 11109 fsumsplitsn 11907 fprodcllem 12103 fprodsplitsn 12130 gsumwsubmcl 13515 gsumwmhm 13517 subctctexmid 16297 |
| Copyright terms: Public domain | W3C validator |