Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orim2i | GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 749 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi2i 752 pm1.5 755 pm2.3 765 ordi 806 dcn 832 pm2.25dc 883 dcan 923 axi12 1502 dveeq2or 1804 equs5or 1818 sb4or 1821 sb4bor 1823 nfsb2or 1825 sbequilem 1826 sbequi 1827 sbal1yz 1989 dvelimor 2006 exmodc 2064 r19.44av 2625 exmidundif 4185 exmidundifim 4186 elsuci 4381 acexmidlemcase 5837 undifdcss 6888 updjudhf 7044 ctssdccl 7076 zindd 9309 fiubm 10741 fsumsplitsn 11351 fprodcllem 11547 fprodsplitsn 11574 exmid1stab 13880 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |