ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2i GIF version

Theorem orim2i 761
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim2i ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem orim2i
StepHypRef Expression
1 id 19 . 2 (𝜒𝜒)
2 orim1i.1 . 2 (𝜑𝜓)
31, 2orim12i 759 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orbi2i  762  pm1.5  765  pm2.3  775  ordi  816  dcn  842  pm2.25dc  893  dcan  933  axi12  1514  dveeq2or  1816  equs5or  1830  sb4or  1833  sb4bor  1835  nfsb2or  1837  sbequilem  1838  sbequi  1839  sbal1yz  2001  dvelimor  2018  exmodc  2076  r19.44av  2636  exmidundif  4207  exmidundifim  4208  exmid1stab  4209  elsuci  4404  acexmidlemcase  5870  undifdcss  6922  updjudhf  7078  ctssdccl  7110  zindd  9371  fiubm  10808  fsumsplitsn  11418  fprodcllem  11614  fprodsplitsn  11641  subctctexmid  14753
  Copyright terms: Public domain W3C validator