![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim2i | GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 760 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi2i 763 pm1.5 766 pm2.3 776 ordi 817 dcn 843 pm2.25dc 894 dcand 934 axi12 1525 dveeq2or 1827 equs5or 1841 sb4or 1844 sb4bor 1846 nfsb2or 1848 sbequilem 1849 sbequi 1850 sbal1yz 2017 dvelimor 2034 exmodc 2092 r19.44av 2653 exmidundif 4235 exmidundifim 4236 exmid1stab 4237 elsuci 4434 acexmidlemcase 5913 undifdcss 6979 updjudhf 7138 ctssdccl 7170 zindd 9435 fiubm 10899 fsumsplitsn 11553 fprodcllem 11749 fprodsplitsn 11776 gsumwsubmcl 13068 gsumwmhm 13070 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |