| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim2i | GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 761 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi2i 764 pm1.5 767 pm2.3 777 ordi 818 dcn 844 pm2.25dc 895 dcand 935 axi12 1538 dveeq2or 1840 equs5or 1854 sb4or 1857 sb4bor 1859 nfsb2or 1861 sbequilem 1862 sbequi 1863 sbal1yz 2030 dvelimor 2047 exmodc 2105 r19.44av 2666 exmidundif 4255 exmidundifim 4256 exmid1stab 4257 elsuci 4455 acexmidlemcase 5949 undifdcss 7032 updjudhf 7193 ctssdccl 7225 zindd 9504 fiubm 10986 lswex 11058 fsumsplitsn 11771 fprodcllem 11967 fprodsplitsn 11994 gsumwsubmcl 13378 gsumwmhm 13380 subctctexmid 16052 |
| Copyright terms: Public domain | W3C validator |