Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orim2i | GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 754 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi2i 757 pm1.5 760 pm2.3 770 ordi 811 dcn 837 pm2.25dc 888 dcan 928 axi12 1507 dveeq2or 1809 equs5or 1823 sb4or 1826 sb4bor 1828 nfsb2or 1830 sbequilem 1831 sbequi 1832 sbal1yz 1994 dvelimor 2011 exmodc 2069 r19.44av 2629 exmidundif 4192 exmidundifim 4193 elsuci 4388 acexmidlemcase 5848 undifdcss 6900 updjudhf 7056 ctssdccl 7088 zindd 9330 fiubm 10763 fsumsplitsn 11373 fprodcllem 11569 fprodsplitsn 11596 exmid1stab 14033 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |