![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim2i | GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 731 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 680 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi2i 734 pm1.5 737 pm2.3 747 ordi 788 dcn 810 pm2.25dc 859 dcan 899 axi12 1475 dveeq2or 1768 equs5or 1782 sb4or 1785 sb4bor 1787 nfsb2or 1789 sbequilem 1790 sbequi 1791 sbal1yz 1950 dvelimor 1967 exmodc 2023 r19.44av 2562 exmidundif 4087 exmidundifim 4088 elsuci 4283 acexmidlemcase 5721 undifdcss 6762 updjudhf 6914 ctssdccl 6946 zindd 9067 fsumsplitsn 11065 |
Copyright terms: Public domain | W3C validator |