Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbia1 | GIF version |
Description: Lemma 23 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.) |
Ref | Expression |
---|---|
hbia1 | ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1533 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
2 | hba1 1533 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
3 | 1, 2 | hbim 1538 | 1 ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1440 ax-gen 1442 ax-4 1503 ax-ial 1527 ax-i5r 1528 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |