| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hba1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ial 1558 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-ial 1558 |
| This theorem is referenced by: nfa1 1565 a5i 1567 hba2 1575 hbia1 1576 19.21h 1581 19.21ht 1605 exim 1623 19.12 1689 19.38 1700 ax9o 1722 equveli 1783 nfald 1784 equs5a 1818 ax11v2 1844 equs5 1853 equs5or 1854 sb56 1910 hbsb4t 2042 hbeu1 2065 eupickbi 2137 moexexdc 2139 2eu4 2148 exists2 2152 hbra1 2537 |
| Copyright terms: Public domain | W3C validator |