ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hba1 GIF version

Theorem hba1 1564
Description: 𝑥 is not free in 𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hba1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hba1
StepHypRef Expression
1 ax-ial 1558 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371
This theorem was proved from axioms:  ax-ial 1558
This theorem is referenced by:  nfa1  1565  a5i  1567  hba2  1575  hbia1  1576  19.21h  1581  19.21ht  1605  exim  1623  19.12  1689  19.38  1700  ax9o  1722  equveli  1783  nfald  1784  equs5a  1818  ax11v2  1844  equs5  1853  equs5or  1854  sb56  1910  hbsb4t  2042  hbeu1  2065  eupickbi  2137  moexexdc  2139  2eu4  2148  exists2  2152  hbra1  2537
  Copyright terms: Public domain W3C validator