ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hba1 GIF version

Theorem hba1 1554
Description: 𝑥 is not free in 𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hba1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hba1
StepHypRef Expression
1 ax-ial 1548 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362
This theorem was proved from axioms:  ax-ial 1548
This theorem is referenced by:  nfa1  1555  a5i  1557  hba2  1565  hbia1  1566  19.21h  1571  19.21ht  1595  exim  1613  19.12  1679  19.38  1690  ax9o  1712  equveli  1773  nfald  1774  equs5a  1808  ax11v2  1834  equs5  1843  equs5or  1844  sb56  1900  hbsb4t  2032  hbeu1  2055  eupickbi  2127  moexexdc  2129  2eu4  2138  exists2  2142  hbra1  2527
  Copyright terms: Public domain W3C validator