Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hba1 | GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ial 1527 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-ial 1527 |
This theorem is referenced by: nfa1 1534 a5i 1536 hba2 1544 hbia1 1545 19.21h 1550 19.21ht 1574 exim 1592 19.12 1658 19.38 1669 ax9o 1691 equveli 1752 nfald 1753 equs5a 1787 ax11v2 1813 equs5 1822 equs5or 1823 sb56 1878 hbsb4t 2006 hbeu1 2029 eupickbi 2101 moexexdc 2103 2eu4 2112 exists2 2116 hbra1 2500 |
Copyright terms: Public domain | W3C validator |