ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hba1 GIF version

Theorem hba1 1533
Description: 𝑥 is not free in 𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hba1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hba1
StepHypRef Expression
1 ax-ial 1527 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346
This theorem was proved from axioms:  ax-ial 1527
This theorem is referenced by:  nfa1  1534  a5i  1536  hba2  1544  hbia1  1545  19.21h  1550  19.21ht  1574  exim  1592  19.12  1658  19.38  1669  ax9o  1691  equveli  1752  nfald  1753  equs5a  1787  ax11v2  1813  equs5  1822  equs5or  1823  sb56  1878  hbsb4t  2006  hbeu1  2029  eupickbi  2101  moexexdc  2103  2eu4  2112  exists2  2116  hbra1  2500
  Copyright terms: Public domain W3C validator