![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hba1 | GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ial 1497 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1312 |
This theorem was proved from axioms: ax-ial 1497 |
This theorem is referenced by: nfa1 1504 a5i 1505 hba2 1513 hbia1 1514 19.21h 1519 19.21ht 1543 exim 1561 19.12 1626 19.38 1637 ax9o 1659 equveli 1715 nfald 1716 equs5a 1748 ax11v2 1774 equs5 1783 equs5or 1784 sb56 1839 hbsb4t 1964 hbeu1 1985 eupickbi 2057 moexexdc 2059 2eu4 2068 exists2 2072 hbra1 2439 |
Copyright terms: Public domain | W3C validator |