| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hba1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ial 1548 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-ial 1548 |
| This theorem is referenced by: nfa1 1555 a5i 1557 hba2 1565 hbia1 1566 19.21h 1571 19.21ht 1595 exim 1613 19.12 1679 19.38 1690 ax9o 1712 equveli 1773 nfald 1774 equs5a 1808 ax11v2 1834 equs5 1843 equs5or 1844 sb56 1900 hbsb4t 2032 hbeu1 2055 eupickbi 2127 moexexdc 2129 2eu4 2138 exists2 2142 hbra1 2527 |
| Copyright terms: Public domain | W3C validator |