Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hba1 | GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ial 1522 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-ial 1522 |
This theorem is referenced by: nfa1 1529 a5i 1531 hba2 1539 hbia1 1540 19.21h 1545 19.21ht 1569 exim 1587 19.12 1653 19.38 1664 ax9o 1686 equveli 1747 nfald 1748 equs5a 1782 ax11v2 1808 equs5 1817 equs5or 1818 sb56 1873 hbsb4t 2001 hbeu1 2024 eupickbi 2096 moexexdc 2098 2eu4 2107 exists2 2111 hbra1 2496 |
Copyright terms: Public domain | W3C validator |