| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hba1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ial 1580 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 |
| This theorem was proved from axioms: ax-ial 1580 |
| This theorem is referenced by: nfa1 1587 a5i 1589 hba2 1597 hbia1 1598 19.21h 1603 19.21ht 1627 exim 1645 19.12 1711 19.38 1722 ax9o 1744 equveli 1805 nfald 1806 equs5a 1840 ax11v2 1866 equs5 1875 equs5or 1876 sb56 1932 hbsb4t 2064 hbeu1 2087 eupickbi 2160 moexexdc 2162 2eu4 2171 exists2 2175 hbra1 2560 |
| Copyright terms: Public domain | W3C validator |