| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hba1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hba1 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ial 1556 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 |
| This theorem was proved from axioms: ax-ial 1556 |
| This theorem is referenced by: nfa1 1563 a5i 1565 hba2 1573 hbia1 1574 19.21h 1579 19.21ht 1603 exim 1621 19.12 1687 19.38 1698 ax9o 1720 equveli 1781 nfald 1782 equs5a 1816 ax11v2 1842 equs5 1851 equs5or 1852 sb56 1908 hbsb4t 2040 hbeu1 2063 eupickbi 2135 moexexdc 2137 2eu4 2146 exists2 2150 hbra1 2535 |
| Copyright terms: Public domain | W3C validator |