ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hba1 GIF version

Theorem hba1 1503
Description: 𝑥 is not free in 𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hba1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hba1
StepHypRef Expression
1 ax-ial 1497 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1312
This theorem was proved from axioms:  ax-ial 1497
This theorem is referenced by:  nfa1  1504  a5i  1505  hba2  1513  hbia1  1514  19.21h  1519  19.21ht  1543  exim  1561  19.12  1626  19.38  1637  ax9o  1659  equveli  1715  nfald  1716  equs5a  1748  ax11v2  1774  equs5  1783  equs5or  1784  sb56  1839  hbsb4t  1964  hbeu1  1985  eupickbi  2057  moexexdc  2059  2eu4  2068  exists2  2072  hbra1  2439
  Copyright terms: Public domain W3C validator