Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con3d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | notnot 619 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con2d 614 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: con3rr3 623 con3dimp 625 con3 632 nsyld 638 nsyli 639 jcn 641 notbi 656 impidc 848 bijadc 872 pm2.13dc 875 xoranor 1367 mo2n 2042 necon3ad 2378 necon3bd 2379 nelcon3d 2442 ssneld 3144 sscon 3256 difrab 3396 eunex 4538 ndmfvg 5517 nnaord 6477 nnmord 6485 php5 6824 php5dom 6829 supmoti 6958 exmidomniim 7105 mkvprop 7122 enmkvlem 7125 prubl 7427 letr 7981 eqord1 8381 prodge0 8749 lt2msq 8781 nnge1 8880 nzadd 9243 irradd 9584 irrmul 9585 xrletr 9744 frec2uzf1od 10341 zesq 10573 expcanlem 10628 nn0opthd 10635 bccmpl 10667 maxleast 11155 fisumss 11333 dvdsbnd 11889 prm2orodd 12058 coprm 12076 prmndvdsfaclt 12088 hashgcdeq 12171 cos11 13414 bj-nnsn 13614 bj-nnelirr 13835 exmid1stab 13880 ismkvnnlem 13931 nconstwlpolem 13943 |
Copyright terms: Public domain | W3C validator |