| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | notnot 632 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con2d 627 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: con3rr3 636 con3dimp 638 con3 645 nsyld 651 nsyli 652 jcn 655 notbi 670 impidc 863 bijadc 887 pm2.13dc 890 xoranor 1419 mo2n 2105 necon3ad 2442 necon3bd 2443 nelcon3d 2506 ssneld 3226 sscon 3338 difrab 3478 exmid1stab 4292 eunex 4653 ndmfvg 5660 nnaord 6663 nnmord 6671 php5 7027 php5dom 7032 supmoti 7168 exmidomniim 7316 mkvprop 7333 enmkvlem 7336 prubl 7681 letr 8237 eqord1 8638 prodge0 9009 lt2msq 9041 nnge1 9141 nzadd 9507 irradd 9849 irrmul 9850 xrletr 10012 frec2uzf1od 10636 zesq 10888 expcanlem 10945 nn0opthd 10952 bccmpl 10984 fundm2domnop0 11075 maxleast 11732 fisumss 11911 dvdsbnd 12485 prm2orodd 12656 coprm 12674 prmndvdsfaclt 12686 hashgcdeq 12770 cos11 15535 bj-nnsn 16121 bj-nnelirr 16340 fidcen 16379 ismkvnnlem 16450 nconstwlpolem 16463 |
| Copyright terms: Public domain | W3C validator |