![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | notnot 629 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con2d 624 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: con3rr3 633 con3dimp 635 con3 642 nsyld 648 nsyli 649 jcn 651 notbi 666 impidc 858 bijadc 882 pm2.13dc 885 xoranor 1377 mo2n 2054 necon3ad 2389 necon3bd 2390 nelcon3d 2453 ssneld 3158 sscon 3270 difrab 3410 exmid1stab 4209 eunex 4561 ndmfvg 5547 nnaord 6510 nnmord 6518 php5 6858 php5dom 6863 supmoti 6992 exmidomniim 7139 mkvprop 7156 enmkvlem 7159 prubl 7485 letr 8040 eqord1 8440 prodge0 8811 lt2msq 8843 nnge1 8942 nzadd 9305 irradd 9646 irrmul 9647 xrletr 9808 frec2uzf1od 10406 zesq 10639 expcanlem 10695 nn0opthd 10702 bccmpl 10734 maxleast 11222 fisumss 11400 dvdsbnd 11957 prm2orodd 12126 coprm 12144 prmndvdsfaclt 12156 hashgcdeq 12239 cos11 14277 bj-nnsn 14488 bj-nnelirr 14708 ismkvnnlem 14803 nconstwlpolem 14815 |
Copyright terms: Public domain | W3C validator |