![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | notnot 629 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con2d 624 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: con3rr3 633 con3dimp 635 con3 642 nsyld 648 nsyli 649 jcn 651 notbi 666 impidc 858 bijadc 882 pm2.13dc 885 xoranor 1377 mo2n 2054 necon3ad 2389 necon3bd 2390 nelcon3d 2453 ssneld 3157 sscon 3269 difrab 3409 exmid1stab 4208 eunex 4560 ndmfvg 5546 nnaord 6509 nnmord 6517 php5 6857 php5dom 6862 supmoti 6991 exmidomniim 7138 mkvprop 7155 enmkvlem 7158 prubl 7484 letr 8039 eqord1 8439 prodge0 8810 lt2msq 8842 nnge1 8941 nzadd 9304 irradd 9645 irrmul 9646 xrletr 9807 frec2uzf1od 10405 zesq 10638 expcanlem 10694 nn0opthd 10701 bccmpl 10733 maxleast 11221 fisumss 11399 dvdsbnd 11956 prm2orodd 12125 coprm 12143 prmndvdsfaclt 12155 hashgcdeq 12238 cos11 14244 bj-nnsn 14455 bj-nnelirr 14675 ismkvnnlem 14770 nconstwlpolem 14782 |
Copyright terms: Public domain | W3C validator |