| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | notnot 632 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con2d 627 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: con3rr3 636 con3dimp 638 con3 645 nsyld 651 nsyli 652 jcn 655 notbi 670 impidc 862 bijadc 886 pm2.13dc 889 xoranor 1399 mo2n 2085 necon3ad 2422 necon3bd 2423 nelcon3d 2486 ssneld 3206 sscon 3318 difrab 3458 exmid1stab 4271 eunex 4630 ndmfvg 5634 nnaord 6625 nnmord 6633 php5 6987 php5dom 6992 supmoti 7128 exmidomniim 7276 mkvprop 7293 enmkvlem 7296 prubl 7641 letr 8197 eqord1 8598 prodge0 8969 lt2msq 9001 nnge1 9101 nzadd 9467 irradd 9809 irrmul 9810 xrletr 9972 frec2uzf1od 10595 zesq 10847 expcanlem 10904 nn0opthd 10911 bccmpl 10943 fundm2domnop0 11034 maxleast 11690 fisumss 11869 dvdsbnd 12443 prm2orodd 12614 coprm 12632 prmndvdsfaclt 12644 hashgcdeq 12728 cos11 15492 bj-nnsn 16007 bj-nnelirr 16226 ismkvnnlem 16331 nconstwlpolem 16344 |
| Copyright terms: Public domain | W3C validator |