| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | notnot 630 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con2d 625 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3rr3 634 con3dimp 636 con3 643 nsyld 649 nsyli 650 jcn 653 notbi 668 impidc 860 bijadc 884 pm2.13dc 887 xoranor 1397 mo2n 2083 necon3ad 2419 necon3bd 2420 nelcon3d 2483 ssneld 3196 sscon 3308 difrab 3448 exmid1stab 4256 eunex 4613 ndmfvg 5614 nnaord 6602 nnmord 6610 php5 6962 php5dom 6967 supmoti 7102 exmidomniim 7250 mkvprop 7267 enmkvlem 7270 prubl 7606 letr 8162 eqord1 8563 prodge0 8934 lt2msq 8966 nnge1 9066 nzadd 9432 irradd 9774 irrmul 9775 xrletr 9937 frec2uzf1od 10558 zesq 10810 expcanlem 10867 nn0opthd 10874 bccmpl 10906 fundm2domnop0 10997 maxleast 11568 fisumss 11747 dvdsbnd 12321 prm2orodd 12492 coprm 12510 prmndvdsfaclt 12522 hashgcdeq 12606 cos11 15369 bj-nnsn 15743 bj-nnelirr 15963 ismkvnnlem 16065 nconstwlpolem 16078 |
| Copyright terms: Public domain | W3C validator |