| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | notnot 630 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
| 3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
| 4 | 3 | con2d 625 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: con3rr3 634 con3dimp 636 con3 643 nsyld 649 nsyli 650 jcn 652 notbi 667 impidc 859 bijadc 883 pm2.13dc 886 xoranor 1388 mo2n 2073 necon3ad 2409 necon3bd 2410 nelcon3d 2473 ssneld 3186 sscon 3298 difrab 3438 exmid1stab 4242 eunex 4598 ndmfvg 5592 nnaord 6576 nnmord 6584 php5 6928 php5dom 6933 supmoti 7068 exmidomniim 7216 mkvprop 7233 enmkvlem 7236 prubl 7572 letr 8128 eqord1 8529 prodge0 8900 lt2msq 8932 nnge1 9032 nzadd 9397 irradd 9739 irrmul 9740 xrletr 9902 frec2uzf1od 10517 zesq 10769 expcanlem 10826 nn0opthd 10833 bccmpl 10865 maxleast 11397 fisumss 11576 dvdsbnd 12150 prm2orodd 12321 coprm 12339 prmndvdsfaclt 12351 hashgcdeq 12435 cos11 15175 bj-nnsn 15465 bj-nnelirr 15685 ismkvnnlem 15787 nconstwlpolem 15800 |
| Copyright terms: Public domain | W3C validator |