| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an1i | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| mp3an1i.1 | ⊢ 𝜓 | 
| mp3an1i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | 
| Ref | Expression | 
|---|---|
| mp3an1i | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an1i.1 | . . 3 ⊢ 𝜓 | |
| 2 | mp3an1i.2 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
| 3 | 2 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) | 
| 4 | 1, 3 | mp3an1 1335 | . 2 ⊢ ((𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) | 
| 5 | 4 | com12 30 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |