Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an1i | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
mp3an1i.1 | ⊢ 𝜓 |
mp3an1i.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
mp3an1i | ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an1i.1 | . . 3 ⊢ 𝜓 | |
2 | mp3an1i.2 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | |
3 | 2 | com12 30 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
4 | 1, 3 | mp3an1 1314 | . 2 ⊢ ((𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
5 | 4 | com12 30 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |