| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an23 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| mp3an23.1 | ⊢ 𝜓 | 
| mp3an23.2 | ⊢ 𝜒 | 
| mp3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| mp3an23 | ⊢ (𝜑 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an23.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an23.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an23.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1337 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | 
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: sbciegf 3021 ac6sfi 6959 dju0en 7281 1qec 7455 ltaddnq 7474 halfnqq 7477 1idsr 7835 pn0sr 7838 ltm1sr 7844 muleqadd 8695 halfcl 9217 rehalfcl 9218 half0 9219 2halves 9220 halfpos2 9221 halfnneg2 9223 halfaddsub 9225 nneoor 9428 zeo 9431 fztp 10153 modqfrac 10429 iexpcyc 10736 bcn2 10856 bcpasc 10858 imre 11016 reim 11017 crim 11023 addcj 11056 imval2 11059 sinf 11869 efi4p 11882 resin4p 11883 recos4p 11884 sinneg 11891 efival 11897 cosadd 11902 sinmul 11909 sinbnd 11917 cosbnd 11918 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 sin01gt0 11927 cos01gt0 11928 sin02gt0 11929 odd2np1lem 12037 odd2np1 12038 pythagtriplem12 12444 pockthi 12527 opprsubrngg 13767 opprdomnbg 13830 isridl 14060 zlmval 14183 zlmlemg 14184 zlmsca 14188 zlmvscag 14189 mopnex 14741 sub1cncf 14838 sub2cncf 14839 sincosq1lem 15061 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 sinq12gt0 15066 abssinper 15082 coskpi 15084 rpcxpsqrt 15158 logsqrt 15159 2lgsoddprmlem2 15347 | 
| Copyright terms: Public domain | W3C validator |