| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an23 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an23.1 | ⊢ 𝜓 |
| mp3an23.2 | ⊢ 𝜒 |
| mp3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an23.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an23.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an23.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1339 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: sbciegf 3030 ac6sfi 6997 dju0en 7328 1qec 7503 ltaddnq 7522 halfnqq 7525 1idsr 7883 pn0sr 7886 ltm1sr 7892 muleqadd 8743 halfcl 9265 rehalfcl 9266 half0 9267 2halves 9268 halfpos2 9269 halfnneg2 9271 halfaddsub 9273 nneoor 9477 zeo 9480 fztp 10202 modqfrac 10484 iexpcyc 10791 bcn2 10911 bcpasc 10913 imre 11195 reim 11196 crim 11202 addcj 11235 imval2 11238 sinf 12048 efi4p 12061 resin4p 12062 recos4p 12063 sinneg 12070 efival 12076 cosadd 12081 sinmul 12088 sinbnd 12096 cosbnd 12097 ef01bndlem 12100 sin01bnd 12101 cos01bnd 12102 sin01gt0 12106 cos01gt0 12107 sin02gt0 12108 odd2np1lem 12216 odd2np1 12217 pythagtriplem12 12631 pockthi 12714 opprsubrngg 14006 opprdomnbg 14069 isridl 14299 zlmval 14422 zlmlemg 14423 zlmsca 14427 zlmvscag 14428 mopnex 15010 sub1cncf 15107 sub2cncf 15108 sincosq1lem 15330 sincosq2sgn 15332 sincosq3sgn 15333 sincosq4sgn 15334 sinq12gt0 15335 abssinper 15351 coskpi 15353 rpcxpsqrt 15427 logsqrt 15428 2lgsoddprmlem2 15616 |
| Copyright terms: Public domain | W3C validator |