Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an23 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an23.1 | ⊢ 𝜓 |
mp3an23.2 | ⊢ 𝜒 |
mp3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an23 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an23.1 | . 2 ⊢ 𝜓 | |
2 | mp3an23.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an23.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1316 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan2 422 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: sbciegf 2982 ac6sfi 6864 dju0en 7170 1qec 7329 ltaddnq 7348 halfnqq 7351 1idsr 7709 pn0sr 7712 ltm1sr 7718 muleqadd 8565 halfcl 9083 rehalfcl 9084 half0 9085 2halves 9086 halfpos2 9087 halfnneg2 9089 halfaddsub 9091 nneoor 9293 zeo 9296 fztp 10013 modqfrac 10272 iexpcyc 10559 bcn2 10677 bcpasc 10679 imre 10793 reim 10794 crim 10800 addcj 10833 imval2 10836 sinf 11645 efi4p 11658 resin4p 11659 recos4p 11660 sinneg 11667 efival 11673 cosadd 11678 sinmul 11685 sinbnd 11693 cosbnd 11694 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 sin01gt0 11702 cos01gt0 11703 sin02gt0 11704 odd2np1lem 11809 odd2np1 11810 pythagtriplem12 12207 pockthi 12288 mopnex 13155 sincosq1lem 13396 sincosq2sgn 13398 sincosq3sgn 13399 sincosq4sgn 13400 sinq12gt0 13401 abssinper 13417 coskpi 13419 rpcxpsqrt 13492 logsqrt 13493 |
Copyright terms: Public domain | W3C validator |