| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an23 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an23.1 | ⊢ 𝜓 |
| mp3an23.2 | ⊢ 𝜒 |
| mp3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an23.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an23.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an23.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1337 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: sbciegf 3021 ac6sfi 6968 dju0en 7299 1qec 7474 ltaddnq 7493 halfnqq 7496 1idsr 7854 pn0sr 7857 ltm1sr 7863 muleqadd 8714 halfcl 9236 rehalfcl 9237 half0 9238 2halves 9239 halfpos2 9240 halfnneg2 9242 halfaddsub 9244 nneoor 9447 zeo 9450 fztp 10172 modqfrac 10448 iexpcyc 10755 bcn2 10875 bcpasc 10877 imre 11035 reim 11036 crim 11042 addcj 11075 imval2 11078 sinf 11888 efi4p 11901 resin4p 11902 recos4p 11903 sinneg 11910 efival 11916 cosadd 11921 sinmul 11928 sinbnd 11936 cosbnd 11937 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 sin01gt0 11946 cos01gt0 11947 sin02gt0 11948 odd2np1lem 12056 odd2np1 12057 pythagtriplem12 12471 pockthi 12554 opprsubrngg 13845 opprdomnbg 13908 isridl 14138 zlmval 14261 zlmlemg 14262 zlmsca 14266 zlmvscag 14267 mopnex 14849 sub1cncf 14946 sub2cncf 14947 sincosq1lem 15169 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 sinq12gt0 15174 abssinper 15190 coskpi 15192 rpcxpsqrt 15266 logsqrt 15267 2lgsoddprmlem2 15455 |
| Copyright terms: Public domain | W3C validator |