![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an23 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an23.1 | ⊢ 𝜓 |
mp3an23.2 | ⊢ 𝜒 |
mp3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an23 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an23.1 | . 2 ⊢ 𝜓 | |
2 | mp3an23.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an23.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1337 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan2 425 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: sbciegf 3018 ac6sfi 6956 dju0en 7276 1qec 7450 ltaddnq 7469 halfnqq 7472 1idsr 7830 pn0sr 7833 ltm1sr 7839 muleqadd 8689 halfcl 9211 rehalfcl 9212 half0 9213 2halves 9214 halfpos2 9215 halfnneg2 9217 halfaddsub 9219 nneoor 9422 zeo 9425 fztp 10147 modqfrac 10411 iexpcyc 10718 bcn2 10838 bcpasc 10840 imre 10998 reim 10999 crim 11005 addcj 11038 imval2 11041 sinf 11850 efi4p 11863 resin4p 11864 recos4p 11865 sinneg 11872 efival 11878 cosadd 11883 sinmul 11890 sinbnd 11898 cosbnd 11899 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 sin01gt0 11908 cos01gt0 11909 sin02gt0 11910 odd2np1lem 12016 odd2np1 12017 pythagtriplem12 12416 pockthi 12499 opprsubrngg 13710 opprdomnbg 13773 isridl 14003 zlmval 14126 zlmlemg 14127 zlmsca 14131 zlmvscag 14132 mopnex 14684 sub1cncf 14781 sub2cncf 14782 sincosq1lem 15001 sincosq2sgn 15003 sincosq3sgn 15004 sincosq4sgn 15005 sinq12gt0 15006 abssinper 15022 coskpi 15024 rpcxpsqrt 15097 logsqrt 15098 2lgsoddprmlem2 15263 |
Copyright terms: Public domain | W3C validator |