Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an1.1 | ⊢ 𝜑 |
mp3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an1.1 | . 2 ⊢ 𝜑 | |
2 | mp3an1.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expb 1194 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
4 | 1, 3 | mpan 421 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mp3an12 1317 mp3an1i 1320 mp3anl1 1321 mp3an 1327 mp3an2i 1332 mp3an3an 1333 tfrlem9 6287 rdgexgg 6346 oaexg 6416 omexg 6419 oeiexg 6421 oav2 6431 nnaordex 6495 mulidnq 7330 1idpru 7532 addgt0sr 7716 muladd11 8031 cnegex 8076 negsubdi 8154 renegcl 8159 mulneg1 8293 ltaddpos 8350 addge01 8370 rimul 8483 recclap 8575 recidap 8582 recidap2 8583 recdivap2 8621 divdiv23apzi 8661 ltmul12a 8755 lemul12a 8757 mulgt1 8758 ltmulgt11 8759 gt0div 8765 ge0div 8766 ltdiv23i 8821 8th4div3 9076 gtndiv 9286 nn0ind 9305 fnn0ind 9307 xrre2 9757 ioorebasg 9911 fzen 9978 elfz0ubfz0 10060 expubnd 10512 le2sq2 10530 bernneq 10575 expnbnd 10578 faclbnd6 10657 bccl 10680 hashfacen 10749 shftfval 10763 mulreap 10806 caucvgrelemrec 10921 binom1p 11426 efi4p 11658 sinadd 11677 cosadd 11678 cos2t 11691 cos2tsin 11692 absefib 11711 efieq1re 11712 demoivreALT 11714 odd2np1 11810 opoe 11832 omoe 11833 opeo 11834 omeo 11835 gcdadd 11918 gcdmultiple 11953 algcvgblem 11981 algcvga 11983 isprm3 12050 coprm 12076 1arith2 12298 bl2ioo 13182 ioo2blex 13184 sinperlem 13369 logge0 13441 lgsdir2 13574 1lgs 13584 |
Copyright terms: Public domain | W3C validator |