| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an1.1 | ⊢ 𝜑 |
| mp3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an1.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an1.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expb 1206 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 4 | 1, 3 | mpan 424 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3an12 1338 mp3an1i 1341 mp3anl1 1342 mp3an 1348 mp3an2i 1353 mp3an3an 1354 tfrlem9 6386 rdgexgg 6445 oaexg 6515 omexg 6518 oeiexg 6520 oav2 6530 nnaordex 6595 mulidnq 7473 1idpru 7675 addgt0sr 7859 muladd11 8176 cnegex 8221 negsubdi 8299 renegcl 8304 mulneg1 8438 ltaddpos 8496 addge01 8516 rimul 8629 recclap 8723 recidap 8730 recidap2 8731 recdivap2 8769 divdiv23apzi 8809 ltmul12a 8904 lemul12a 8906 mulgt1 8907 ltmulgt11 8908 gt0div 8914 ge0div 8915 ltdiv23i 8970 8th4div3 9227 gtndiv 9438 nn0ind 9457 fnn0ind 9459 xrre2 9913 ioorebasg 10067 fzen 10135 elfz0ubfz0 10217 expubnd 10705 le2sq2 10724 bernneq 10769 expnbnd 10772 faclbnd6 10853 bccl 10876 hashfacen 10945 wrdred1hash 10995 shftfval 11003 mulreap 11046 caucvgrelemrec 11161 binom1p 11667 efi4p 11899 sinadd 11918 cosadd 11919 cos2t 11932 cos2tsin 11933 absefib 11953 efieq1re 11954 demoivreALT 11956 odd2np1 12055 opoe 12077 omoe 12078 opeo 12079 omeo 12080 gcdadd 12177 gcdmultiple 12212 algcvgblem 12242 algcvga 12244 isprm3 12311 coprm 12337 1arith2 12562 rmodislmod 13983 cnfldneg 14205 cnfldmulg 14208 cnfldexp 14209 zringmulg 14230 zringsubgval 14237 bl2ioo 14870 ioo2blex 14872 mpomulcn 14886 sinperlem 15128 logge0 15200 lgsdir2 15358 1lgs 15368 |
| Copyright terms: Public domain | W3C validator |