![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an1.1 | ⊢ 𝜑 |
mp3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an1.1 | . 2 ⊢ 𝜑 | |
2 | mp3an1.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expb 1206 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
4 | 1, 3 | mpan 424 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mp3an12 1338 mp3an1i 1341 mp3anl1 1342 mp3an 1348 mp3an2i 1353 mp3an3an 1354 tfrlem9 6348 rdgexgg 6407 oaexg 6477 omexg 6480 oeiexg 6482 oav2 6492 nnaordex 6557 mulidnq 7423 1idpru 7625 addgt0sr 7809 muladd11 8125 cnegex 8170 negsubdi 8248 renegcl 8253 mulneg1 8387 ltaddpos 8444 addge01 8464 rimul 8577 recclap 8671 recidap 8678 recidap2 8679 recdivap2 8717 divdiv23apzi 8757 ltmul12a 8852 lemul12a 8854 mulgt1 8855 ltmulgt11 8856 gt0div 8862 ge0div 8863 ltdiv23i 8918 8th4div3 9173 gtndiv 9383 nn0ind 9402 fnn0ind 9404 xrre2 9857 ioorebasg 10011 fzen 10079 elfz0ubfz0 10161 expubnd 10617 le2sq2 10636 bernneq 10681 expnbnd 10684 faclbnd6 10765 bccl 10788 hashfacen 10857 shftfval 10871 mulreap 10914 caucvgrelemrec 11029 binom1p 11534 efi4p 11766 sinadd 11785 cosadd 11786 cos2t 11799 cos2tsin 11800 absefib 11819 efieq1re 11820 demoivreALT 11822 odd2np1 11919 opoe 11941 omoe 11942 opeo 11943 omeo 11944 gcdadd 12027 gcdmultiple 12062 algcvgblem 12092 algcvga 12094 isprm3 12161 coprm 12187 1arith2 12411 rmodislmod 13692 cnfldneg 13901 cnfldmulg 13904 cnfldexp 13905 zringmulg 13922 zringsubgval 13929 bl2ioo 14527 ioo2blex 14529 sinperlem 14714 logge0 14786 lgsdir2 14920 1lgs 14930 |
Copyright terms: Public domain | W3C validator |