| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an1.1 | ⊢ 𝜑 |
| mp3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an1.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an1.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expb 1228 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 4 | 1, 3 | mpan 424 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mp3an12 1361 mp3an1i 1364 mp3anl1 1365 mp3an 1371 mp3an2i 1376 mp3an3an 1377 tfrlem9 6465 rdgexgg 6524 oaexg 6594 omexg 6597 oeiexg 6599 oav2 6609 nnaordex 6674 mulidnq 7576 1idpru 7778 addgt0sr 7962 muladd11 8279 cnegex 8324 negsubdi 8402 renegcl 8407 mulneg1 8541 ltaddpos 8599 addge01 8619 rimul 8732 recclap 8826 recidap 8833 recidap2 8834 recdivap2 8872 divdiv23apzi 8912 ltmul12a 9007 lemul12a 9009 mulgt1 9010 ltmulgt11 9011 gt0div 9017 ge0div 9018 ltdiv23i 9073 8th4div3 9330 gtndiv 9542 nn0ind 9561 fnn0ind 9563 xrre2 10017 ioorebasg 10171 fzen 10239 elfz0ubfz0 10321 expubnd 10818 le2sq2 10837 bernneq 10882 expnbnd 10885 faclbnd6 10966 bccl 10989 hashfacen 11058 wrdred1hash 11115 ccatlid 11141 swrd0g 11192 shftfval 11332 mulreap 11375 caucvgrelemrec 11490 binom1p 11996 efi4p 12228 sinadd 12247 cosadd 12248 cos2t 12261 cos2tsin 12262 absefib 12282 efieq1re 12283 demoivreALT 12285 odd2np1 12384 opoe 12406 omoe 12407 opeo 12408 omeo 12409 gcdadd 12506 gcdmultiple 12541 algcvgblem 12571 algcvga 12573 isprm3 12640 coprm 12666 1arith2 12891 rmodislmod 14315 cnfldneg 14537 cnfldmulg 14540 cnfldexp 14541 zringmulg 14562 zringsubgval 14569 bl2ioo 15224 ioo2blex 15226 mpomulcn 15240 sinperlem 15482 logge0 15554 lgsdir2 15712 1lgs 15722 |
| Copyright terms: Public domain | W3C validator |