| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| mp3an1.1 | ⊢ 𝜑 | 
| mp3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| mp3an1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an1.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an1.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expb 1206 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | 
| 4 | 1, 3 | mpan 424 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mp3an12 1338 mp3an1i 1341 mp3anl1 1342 mp3an 1348 mp3an2i 1353 mp3an3an 1354 tfrlem9 6377 rdgexgg 6436 oaexg 6506 omexg 6509 oeiexg 6511 oav2 6521 nnaordex 6586 mulidnq 7456 1idpru 7658 addgt0sr 7842 muladd11 8159 cnegex 8204 negsubdi 8282 renegcl 8287 mulneg1 8421 ltaddpos 8479 addge01 8499 rimul 8612 recclap 8706 recidap 8713 recidap2 8714 recdivap2 8752 divdiv23apzi 8792 ltmul12a 8887 lemul12a 8889 mulgt1 8890 ltmulgt11 8891 gt0div 8897 ge0div 8898 ltdiv23i 8953 8th4div3 9210 gtndiv 9421 nn0ind 9440 fnn0ind 9442 xrre2 9896 ioorebasg 10050 fzen 10118 elfz0ubfz0 10200 expubnd 10688 le2sq2 10707 bernneq 10752 expnbnd 10755 faclbnd6 10836 bccl 10859 hashfacen 10928 wrdred1hash 10978 shftfval 10986 mulreap 11029 caucvgrelemrec 11144 binom1p 11650 efi4p 11882 sinadd 11901 cosadd 11902 cos2t 11915 cos2tsin 11916 absefib 11936 efieq1re 11937 demoivreALT 11939 odd2np1 12038 opoe 12060 omoe 12061 opeo 12062 omeo 12063 gcdadd 12152 gcdmultiple 12187 algcvgblem 12217 algcvga 12219 isprm3 12286 coprm 12312 1arith2 12537 rmodislmod 13907 cnfldneg 14129 cnfldmulg 14132 cnfldexp 14133 zringmulg 14154 zringsubgval 14161 bl2ioo 14786 ioo2blex 14788 mpomulcn 14802 sinperlem 15044 logge0 15116 lgsdir2 15274 1lgs 15284 | 
| Copyright terms: Public domain | W3C validator |