![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an1.1 | ⊢ 𝜑 |
mp3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an1.1 | . 2 ⊢ 𝜑 | |
2 | mp3an1.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expb 1206 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
4 | 1, 3 | mpan 424 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mp3an12 1338 mp3an1i 1341 mp3anl1 1342 mp3an 1348 mp3an2i 1353 mp3an3an 1354 tfrlem9 6374 rdgexgg 6433 oaexg 6503 omexg 6506 oeiexg 6508 oav2 6518 nnaordex 6583 mulidnq 7451 1idpru 7653 addgt0sr 7837 muladd11 8154 cnegex 8199 negsubdi 8277 renegcl 8282 mulneg1 8416 ltaddpos 8473 addge01 8493 rimul 8606 recclap 8700 recidap 8707 recidap2 8708 recdivap2 8746 divdiv23apzi 8786 ltmul12a 8881 lemul12a 8883 mulgt1 8884 ltmulgt11 8885 gt0div 8891 ge0div 8892 ltdiv23i 8947 8th4div3 9204 gtndiv 9415 nn0ind 9434 fnn0ind 9436 xrre2 9890 ioorebasg 10044 fzen 10112 elfz0ubfz0 10194 expubnd 10670 le2sq2 10689 bernneq 10734 expnbnd 10737 faclbnd6 10818 bccl 10841 hashfacen 10910 wrdred1hash 10960 shftfval 10968 mulreap 11011 caucvgrelemrec 11126 binom1p 11631 efi4p 11863 sinadd 11882 cosadd 11883 cos2t 11896 cos2tsin 11897 absefib 11917 efieq1re 11918 demoivreALT 11920 odd2np1 12017 opoe 12039 omoe 12040 opeo 12041 omeo 12042 gcdadd 12125 gcdmultiple 12160 algcvgblem 12190 algcvga 12192 isprm3 12259 coprm 12285 1arith2 12509 rmodislmod 13850 cnfldneg 14072 cnfldmulg 14075 cnfldexp 14076 zringmulg 14097 zringsubgval 14104 bl2ioo 14729 ioo2blex 14731 mpomulcn 14745 sinperlem 14984 logge0 15056 lgsdir2 15190 1lgs 15200 |
Copyright terms: Public domain | W3C validator |