| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an1.1 | ⊢ 𝜑 |
| mp3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an1.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an1.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expb 1207 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 4 | 1, 3 | mpan 424 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3an12 1340 mp3an1i 1343 mp3anl1 1344 mp3an 1350 mp3an2i 1355 mp3an3an 1356 tfrlem9 6407 rdgexgg 6466 oaexg 6536 omexg 6539 oeiexg 6541 oav2 6551 nnaordex 6616 mulidnq 7504 1idpru 7706 addgt0sr 7890 muladd11 8207 cnegex 8252 negsubdi 8330 renegcl 8335 mulneg1 8469 ltaddpos 8527 addge01 8547 rimul 8660 recclap 8754 recidap 8761 recidap2 8762 recdivap2 8800 divdiv23apzi 8840 ltmul12a 8935 lemul12a 8937 mulgt1 8938 ltmulgt11 8939 gt0div 8945 ge0div 8946 ltdiv23i 9001 8th4div3 9258 gtndiv 9470 nn0ind 9489 fnn0ind 9491 xrre2 9945 ioorebasg 10099 fzen 10167 elfz0ubfz0 10249 expubnd 10743 le2sq2 10762 bernneq 10807 expnbnd 10810 faclbnd6 10891 bccl 10914 hashfacen 10983 wrdred1hash 11039 ccatlid 11065 swrd0g 11116 shftfval 11165 mulreap 11208 caucvgrelemrec 11323 binom1p 11829 efi4p 12061 sinadd 12080 cosadd 12081 cos2t 12094 cos2tsin 12095 absefib 12115 efieq1re 12116 demoivreALT 12118 odd2np1 12217 opoe 12239 omoe 12240 opeo 12241 omeo 12242 gcdadd 12339 gcdmultiple 12374 algcvgblem 12404 algcvga 12406 isprm3 12473 coprm 12499 1arith2 12724 rmodislmod 14146 cnfldneg 14368 cnfldmulg 14371 cnfldexp 14372 zringmulg 14393 zringsubgval 14400 bl2ioo 15055 ioo2blex 15057 mpomulcn 15071 sinperlem 15313 logge0 15385 lgsdir2 15543 1lgs 15553 |
| Copyright terms: Public domain | W3C validator |