ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp3anl1 GIF version

Theorem mp3anl1 1326
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
mp3anl1.1 𝜑
mp3anl1.2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
mp3anl1 (((𝜓𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem mp3anl1
StepHypRef Expression
1 mp3anl1.1 . . 3 𝜑
2 mp3anl1.2 . . . 4 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜏)
32ex 114 . . 3 ((𝜑𝜓𝜒) → (𝜃𝜏))
41, 3mp3an1 1319 . 2 ((𝜓𝜒) → (𝜃𝜏))
54imp 123 1 (((𝜓𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  mp3anr1  1329  archnqq  7379  facavg  10680  iddvds  11766
  Copyright terms: Public domain W3C validator