| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3anr2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Nov-2006.) | 
| Ref | Expression | 
|---|---|
| mp3anr2.1 | ⊢ 𝜒 | 
| mp3anr2.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | 
| Ref | Expression | 
|---|---|
| mp3anr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3anr2.1 | . . 3 ⊢ 𝜒 | |
| 2 | mp3anr2.2 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 2 | ancoms 268 | . . 3 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜑) → 𝜏) | 
| 4 | 1, 3 | mp3anl2 1343 | . 2 ⊢ (((𝜓 ∧ 𝜃) ∧ 𝜑) → 𝜏) | 
| 5 | 4 | ancoms 268 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mulgp1 13285 | 
| Copyright terms: Public domain | W3C validator |